站内搜索: 请输入搜索关键词
当前页面: 在线文档首页 > NetBeans API Javadoc (Current Development Version)

How to use certain NetBeans APIs - NetBeans API Javadoc (Current Development Version)

How to use certain NetBeans APIs

This page contains extracted usecases for some of the NetBeans modules that offer an API.

How to use Ant?

The Ant integration module recognizes Ant build scripts, facilitates editing them as text or structurally, lets the user run targets or create shortcuts to them, etc.

The principal use cases for the API are covered in the overall API architecture.


How to use Debugger Core API?

The debuggercore/api module (Debugger Core API) allows to install different debugger implementation to one IDE. It allows to share some common UI components.

UseCase I. - Install and use CPP debugger plug-in to NetBeans + Java Debugger.

CPP debugger plug-in installs support for debugging of some new language to the NetBeans IDE, and some new debugging engine. This implementation of debugger should share UI components (actions, Debugger Views, ...) with default NB Java Debugger. It should share basic debugger model too - notion of current context, current session, thread, call stack line, ...

CPP debugger plug-in installs:

UseCase II. - Install and use JSP debugger plug-in to NetBeans + Java Debugger.

JSP debugger plug-in installs support for debugging of some new language to the NetBeans Java Debugger. It does not contain a new debugger engine, but it delegates to standard NB Java debugger. So it does not depends on Debugger Core API only, but it depends on JavaDebugger API too.

JSP debugger plug-in installs:

UseCase III. - Install and use J2EE debugger plug-in to NetBeans + Java Debugger.

J2EE debugger plug-in installs some enhancements to the standard Java Debugger. It does not contain a new debugger engine or language support. So it does not depends on Debugger Core API only, but it depends on JavaDebugger API too.

J2EE debugger plug-in installs:

UseCase IV. - Install and use DBX debugger plug-in to NetBeans.

DBX debugger plug-in installs support for debugging of some new language (CPP) to the NetBeans IDE, and some new debugging engine. But it contains debugger engine for Java debugging too. DBX debugger engine has its own session management (or will have in the next versions). One debugger engine can manage more than one sessions. One engine supports debugging in more than one language.

UseCase V. - Implement Debugger Core UI module on top of Debugger Core API / SPI.

Debugger Core UI needs:


How to use JPDA Debugger API?

The debuggerjpda/api (Debugger JPDA API) defines API for NetBeans Java Debugger.

UseCase I. - Install and use CPP debugger plug-in to NetBeans + Java Debugger.

CPP debugger plug-in installs support for debugging of some new language to the NetBeans IDE, and some new debugging engine. This implementation of debugger should share UI components (actions, Debugger Views, ...) with default NB Java Debugger. It should share basic debugger model too - notion of current context, current session, thread, call stack line, ...

CPP debugger plug-in installs:

UseCase II. - Install and use JSP debugger plug-in to NetBeans + Java Debugger.

JSP debugger plug-in installs support for debugging of some new language to the NetBeans Java Debugger. It does not contain a new debugger engine, but it delegates to standard NB Java debugger. So it does not depends on Debugger Core API only, but it depends on JavaDebugger API too.

JSP debugger plug-in installs:

UseCase III. - Install and use J2EE debugger plug-in to NetBeans + Java Debugger.

J2EE debugger plug-in installs some enhancements to the standard Java Debugger. It does not contain a new debugger engine or language support. So it does not depends on Debugger Core API only, but it depends on JavaDebugger API too.

J2EE debugger plug-in installs:

UseCase IV. - Install and use DBX debugger plug-in to NetBeans.

DBX debugger plug-in installs support for debugging of some new language (CPP) to the NetBeans IDE, and some new debugging engine. But it contains debugger engine for Java debugging too. DBX debugger engine has its own session management (or will have in the next versions). One debugger engine can manage more than one sessions. One engine supports debugging in more than one language.


How to use Java Support APIs?

Models basic aspects of the metadata surrounding Java source files, such as the classpath. More information in the Javadoc.

The API is widely used by all sorts of IDE modules which need to work with Java sources. They can obtain the classpath or boot classpath for a file (if there is one), find out where its source root is, find sources corresponding to bytecode class files, find all sources or classpaths corresponding to open projects, find Javadoc, etc. The SPI is intended mainly for Java platform and library providers, and project type providers, to declare all of this information.


How to use Progress API?

The progress API is good for tracking progress of long lasting tasks in the IDE.

Basic usage

There are 3 types of progress indication:

The default location of the progress indication is the status bar which aggregates all tasks running in the IDE that show progress. However it's possible to exclude the task from the default location and show the progress in one's custom dialog component. In such a case the same task should not appear in the status line component as well.

It's possible to request cancelling the task from status line progress aggregator if the task allows cancelling.

Progress tasks that get started as a result of explicit user action takes precedence in the status line docked component over tasks that are triggered by the system. (say filesystem refresh for example)

The most common usecase of the API looks like this:

ProgressHandle handle = ProgressHandleFactory.creatHandle("My custom task");
...
// we have 100 workunits
// at this point the task appears in status bar.
handle.start(100);
...
handle.progress(10);
...
handle.progress("half way through", 50);
...
handle.progress(99);
// at this point the task is finished and removed from status bar
// it's not realy necessary to count all the way to the limit, finish can be called earlier.
// however it has to be called at the end of the processing.
handle.finish();

Advanced Usage

In case your usage of the API

then you should consider using the aggregating version of APIs which is similar to the simple APIs but has distinctive differences and additions that allow for more complex scenarios.

It allows to compose the progress bar from 1+ independent sources, all sharing proportional piece of the progress bar. Additionally you can monitor the task's overall progress from one central place and possibly add more contributing sources of the progress during processing.

        // let's have a factory for client code that performs some part of the job to be done..
        Lookup.Result res = Lookup.getDefault().lookup(new LookupTemplate(MyWorkerFactory.class));
        Iterator it = res.allInstances().iterator();
        ProgressContributor[] contribs = new ProgressContributor[res.allInstances().size()];
        int i = 0;
        while (it.hasNext()) {
            MyWorkerFactory prov = (MyWorkerFactory)it.next();
            contribs[i] = AggregateProgressFactory.createProgressContributor("Module X contribution");
            MyWorker worker = prov.createWorker(contribs[i]);
            //... snip ... do something with the worker..
            i = i + 1;
        }
        AggregateProgressHandle handle = AggregateProgressFactory.createHandle("My Task", contribs, null, null);
        // non-cancellable and with out output link.
        
        // calling start() at the time when the actual long running task starts processing
        handle.start("here we go");
        // ...snip...
        // now the individual MyWorker instances log their progress.
        // possibly in other threads too..
        // ... snip...
        // 
        if (myConditionThatSpawnsAnotherContributor()) {
            ProgressContributor cont = AggregateProgressFactory.createProgressContributor("Additional exceptional contribution");
            handle.addContributor(cont);
            // ... snip ...
        }
        
        // the task is finished when all the ProgressContributors finish..

How to use Visual Library API?

The Visual Library 2.0 is the next generation of the original Graph Library 1.0. It is designed for a general visualization with a support for graph-oriented modeling. Its focus is to become a part of the NetBeans platform and unify the visualization (UI and API) used in NetBeans-Platform-based applications. See http://graph.netbeans.org/ web-site for details. See documentation for complete set of use-cases and code-snippets.

See documentation for complete set of use-cases.


How to use MultiView Windows?

Multi views are general mechanism for displaying several perspectives, or views of data, which will be used consistently across whole IDE window system. Using multi views will enable modules to visually represent data document or object in unified manner at one specific place in the system, yet still allowing for different perspectives of data viewing.

There is an introduction to MultiView and its usage in its javadoc. It covers the major part of available usecases. Here is just a list of frequently asked or interesting questions slowly expanding as people ask them:

MultiView faq:

How does serialization work?

Q: How does serialization of multiviews work and what needs to be serializable?

First of all, you don't need to worry about serialization if all your MultiViewDescription instances contained in the multiview state to be non serializable. Meaning they all return TopComponent.PERSISTENCE_NEVER in MultiViewDescription.getPersistenceType().

If at least one of the views requires serialization, you have no choice but to make all MultiViewDescription implementors serializable. You also can persist the MultiViewElement instances that the multiview contains. The algorithm here is a bit complicated for performance reasons. Only those Elements are stored that were created during the session and which are Serializable. So if the user never switches to the 4rd tab, and it's corresponding element and visual component never get created, then it won't be stored. (We would have to create it just for the sake of persistance). So if your visual component needs some inital context for creation, you should store it in the description instance, and if the visual component wants to store it's state (location of cursor, selected field, something else that makes sense for the opened component) you should store it in the MultiViewElement. So basically if you are always able create the Element from Description without any persisted data, you don't need to persist anything.

If you define your own CloseOperationHandler implementation for the multiview component, then you also ought to define it Serializable. Otherwise it will be silently replaced by the default handler on restoration of the multiview component.

How to set the display name?

Q: How do I set the display name for the multiview component?

Each MultiViewDescription defines display name and icon. While the icon is meant for the whole document/view tab, the display name is just for the inner switching button. So how does one set the name for the whole MultiView component? It can be done when creating the component.

    TopComponent mvtc = MultiViewFactory.createMultiView(myDescriptions);
    mvtc.setDisplayName("My static mvtc displayName");

Later in the lifecycle of the component, it can be also influenced from within the individual multiview visual elements using the MultiViewElementCallback.updateTitle() method.


How to use Registry over FileSystem?

The Registry over FileSystem is a library implementing registry contexts over the filesystem. The library has very limited API and allows just create context for the FileObject. It is not expected that regular modules should need to use this API. RegistryOverFSAPI

XXX no answer for arch-usecases


How to use UI Handler Library?

XXX no answer for arch-what

XXX no answer for arch-usecases


How to use Auto Update Services?

org.netbeans.api.autoupdate org.netbeans.spi.autoupdate

Browse all available units

Give overview of IDE installation to users, it involve overview of installed modules (grouped together as feature), overview of available updates, overview of available new features. The API can return list of UpdateUnit which describes all instances of unit, e.g. installation in IDE, all its available updates, optionlly its backup instance. UpdateUnit can represent either a feature (e.g. group of modules), a single module or a localization.

Proposed usage of API: Call List<UpdateUnit> UpdateManager.getDefault().getUpdateUnits()

Browse all units by chosen style (e.g. modules, features, localization)

Sometimes there can be a need to get overview of units by chosen style, e.g. feature, module or localization.

Proposed usage of API: Call List<UpdateUnit> UpdateManager.getDefault().getUpdateUnits(UpdateStyle style)

Browse installed modules

When an API client needs to get overview of installed modules.

Proposed usage of API: Call List<UpdateUnit> UpdateManager.getDefault().getUpdateUnits(UpdateStyle style) and filter units which haven't been installed yet.

Search for new functionality

Someone is searching for some functionality which can be installed into IDE. It needs a set of available UpdateUnits which are applicable to active IDE. UpdateManager will search all available UpdateUnit given attribute.

Install new functionality

An client needs to install new functionality into the IDE installation. She knows what unit and what version wants to install. Needs to identify if the functionality is ready to install, resolve its dependencies, identify possible problems and locate other unit what have to be installed together with asked functionality.

Proposed usage of API:

Update of installed unit

A client needs to update some unit of functionality which is already installed. She knows what unit and what update element (by version) wants to install. Needs to identify possible problems with update install, resolve its dependencies, identify possible problems and locate other unit what have to be installed together with asked functionality.

Proposed usage of API: See above Install new functionality

Uninstall functionality

An client needs to uninstall some functionality from IDE installation. She knows what unit wants to uninstall. Needs to identify if the functionality is ready to uninstall, resolve its dependencies, identify possible problems and locate other unit what will be disabled together.

Proposed usage of API:

Switch off functionality

An client needs to switch off (disable) some functionality in IDE installation. Needs to resolve its dependencies, identify possible problems and locate other unit what will be disabled together.

Proposed usage of API:

Switch on functionality

Like Switch off functionality An client needs to switch on (enable) some functionality in IDE installation.

Rollback of previous update

Sometimes an client needs to rollback of installed update of unit to previous version. Needs to resolve its dependencies, identify possible problems and locate other unit what are affected by rollback.

Proposed usage of API: Like above Switch off functionality

Resolve problems what accrued while processing operation

OperationContainer and OperationInfo identifies some problems, i.e. broken dependencies, needs to install more units, the operation causes disable some other modules and so on. The client can use this information to consult these with end-user.

Make IDE up-to-date

Sometimes need to make whole IDE installation up-to-date. Find all available updates of installed units and install the latest available version. It is covered by previous use-cases.

Get all subscriptions to Update Center

Show me all registered subscriptions to Update Center, e.g. get me list of UpdateUnitProvider. Proposed usage of API: Call UpdateUnitProviderFactory.getUpdateUnitProviders()

Subscribe new Update Center

If there is a new Update Center which is not already subscribed into IDE user wants to subscribe new one Update Center which will be connected from that time in periodically checks. There should be a factory where subscribe new one Update Center, known types of Update Center have own factory method. Proposed usage of API: Simply call UpdateUnitProviderFactory.create() which creates and registered new one subscription in the system and will be used from that time in the future.

Customization of Update Center subscription

An user wants to enable or disable of Update Center subscription. Proposed usage of API: Simply call UpdateUnitProviderFactory.setEnable(UpdateUnitProvider, boolean).

Unsubscribe of some Update Center

Simple unsubscribe a chosen Update Center from the system. Need to know of chosen Update Provider Id. This Update Center won't be checked anymore. Proposed usage of API: Simply call UpdateUnitProviderFactory.remove(Id).

Refresh content of subscribed Update Center

The content of Update Provider is cached and the system works across there caches. There is a cache per each Update Center subscription. The caches are refreshed periodically by the system. But, sometime an user wants to call refresh manually. Proposed usage of API: Simply call UpdateUnitProvider.refresh().

Specify the cluster where to install

TBD

Get all installed files of given unit

TBD


How to use Classfile Reader?

The ClassFile API is designed as a fast, low memory-cost way to access classfile information. It is useful for tools and modules that directly read classfiles, such as the clazz and javacore modules.

The normal usecase is for a client wanting to inspect a classfile. A ClassFile instance is created with either a String path, File or InputStream instance. All attributes of the classfile are available as properties, such as getSourceFileName or getMethods.


How to use Database Explorer?

This project provides access to objects defined in the Database Explorer. Documentation is available in the Javadoc.

Registering JDBC drivers

An external module can register JDBC drivers. A typical example is a module which provides integration with a database server. In this case the module contains the JDBC driver for that database server and uses the Database Explorer API to add it do the Database Explorer.

Another client of this API could be a module providing integration with a J2EE application server. Sometimes a J2EE application server bundles a database server for improving the out-of-the-box experience. When the server is registered in the IDE the JDBC drivers for the bundled database server are added to the Database Explorer.

The drivers are registered by making calls on JDBCDriverManager or by registering an XML file which describes the driver in the module layer. The XML file is described by the JDBC Driver DTD. An example of a registration file describing the JDBC driver for PostgreSQL follows:

    <?xml version='1.0'?>
    <!DOCTYPE driver PUBLIC '-//NetBeans//DTD JDBC Driver 1.0//EN' 'http://www.netbeans.org/dtds/jdbc-driver-1_0.dtd'>
    <driver>
      <name value='postgresql-7'/>
      <display-name value='PostgreSQL (v7.0 and later)'/>
      <class value='org.postgresql.Driver'/>
      <urls>
        <url value='file:/folder1/folder2/drivers/pg74.1jdbc3.jar'/>
      </urls>
    </driver>
   

This file should be registered in the Databases/JDBCDrivers folder of the module layer. To addres a bundled JAR inside the IDE the nbinst protocol can be used in the URLs: nbinst:/modules/ext/bundled-driver.jar.

Retrieving the list of JDBC drivers

When creating a new connection the JDBC driver which it should use can be specified. A list of all the registered JDBC drivers can be retrieved using JDBCDriverManager.getDrivers().

Registering database runtimes

An external module can register new database runtimes. A database runtime is an abstraction of a database server instance (usually bundled with the IDE, an integration module or with a J2EE server). It allows a database server instance to be started and stopped when a connection to this instance is made in the IDE. Database runtimes are represented by the DatabaseRuntime SPI interface and are registered in the Databases/Runtimes of the module layer.

Creating database connections

A module can create new database connections (for example to a bundled database). New connections can be added by calling DatabaseConnection.create() to create a new DatabaseConnection instance and then ConnectionManager.addConnection() to add the connection to the Database Explorer.

New connections can also be added by registering them in the module layer. The format of the registration file is described by the Database Connection DTD. An example of a registration file describing a connection to a PostgreSQL database follows:

    <?xml version='1.0'?>
    <!DOCTYPE connection PUBLIC '-//NetBeans//DTD Database Connection 1.0//EN' 'http://www.netbeans.org/dtds/connection-1_0.dtd'>
    <connection>
      <driver-class value='org.postgresql.Driver'/>
      <driver-name value='postgres-7'/>
      <database-url value='jdbc:postgresql:test'/>
      <schema value='public'/>
      <user value='test'/>
    </connection>
   

This file should be registered in the Databases/Connections folder of the module layer.

Retrieving and displaying the list of database connections

Sometimes the list of connections needs to be displayed somewhere else in the IDE than the Runtime tab. A typical example is the SQL Editor, which allows the user to select the database connection which the SQL statement will be executed against in a combo box in the editor toolbar. The list of connections can be obtained by calling ConnectionManager.getConnections(), which returns an array of DatabaseConnection instances.

The client usually needs to show the display name of the connection. The display name can be retrieved using the DatabaseConnection.getDisplayName() method.

Retrieving the properties of database connections

Sometimes a client needs to retrieve the connection properties, such as the driver class. An example could be a module for a J2EE server creating a connection pool. The properties can be retrieved using the getDriverClass(), getDatabaseURL(), getSchema(), getUser() and getPassword() methods of the DatabaseConnection class.

Showing the New Database Connection dialog

Usually when displaying a list of connections (usually in a combo box), the last item is "New Connection", which displays the standard New Database Connection dialog of the Database Explorer. This can be achieved by calling one of the ConnectionManager.showAddConnectionDialog() methods.

Connecting to a database

A component which provides database functionality (such as the SQL Editor) will need to connect to a database. This can be achieved using the DatabaseConnection.showConnectionDialog() method and the java.sql.Connection instance can be retrieved using the getJDBCConnection() method.

Displaying the database connections in the UI

A component which provides database functionality (such as the SQL Editor or a module providing support for data sources) will need to let the user select the a database connection, usually through a combo box. This can be achieved using the DatabaseExplorerUIs.connect() method. The JComboBox passed to the method will be filled with the list of connections as returned by ConnectionManager.getConnections(), followed by a separator and a New Database Connection item which will display the dialog for adding a new database connection when selected.


How to use Diff?

The diff module provides the ability to visualize differencies between source files. It also has a graphical conflicts resolver tool and built-in patch algorithm. List of the main features: Simple APIs, that provide access to registered diff and merge engines and visualizers. Built in and external diff engines defined. Graphical diff vizualizer and conflicts resolver. Extensible with additional diff and merge engines and vizualizers. Patch algorithm implemented for UNIX-style, unidiff and contextual diff formats.

Show a diff from action

From an action or wherever you like you can call this:

public void diff(final StreamSource local, final StreamSource remote){
    SwingUtilities.invokeLater(new Runnable() {
        public void run() {
            try {
                DiffView view = Diff.getDefault().createDiff(local, remote);
                showDiff(view);
            } catch (IOException ex) {
                Logger.getLogger(ThisClass.class.getName()).throwing(ex);
            }
        }
    });
}
public void showDiff(final DiffView view){
    SwingUtilities.invokeLater(new Runnable() {
        public void run() {
            //create our panel with our view
            //right now I am just going to use the diff component 
            // instead of a panel
            //create a topcomponent with our panel
            DiffTopComponent tc = new DiffTopComponent(view);
            tc.setName("MY_DIFF");
            tc.setDisplayName("Some display name");
            tc.open();
            tc.requestActive();
        }
    });
}

Embeded into TopComponent

Here is a top component to display it:

public class DiffTopComponent extends TopComponent {
?? ?? /** Creates a new instance of DiffTopComponent */
?? ?? public DiffTopComponent(Component diffPanel) {
?? ?? ?? ?? setLayout(new BorderLayout());
?? ?? ?? ?? add(diffPanel, BorderLayout.CENTER);
        getAccessibleContext().setAccessibleName(
            NbBundle.getMessage(DiffTopComponent.class, 
            "ACSN_Diff_Top_Component")); // NOI18N
?? ?? ?? ?? 
        getAccessibleContext().setAccessibleDescription(
            NbBundle.getMessage(DiffTopComponent.class, 
            "ACSD_Diff_Top_Component")); // NOI18N
?? ?? }
?? ??
?? ?? public DiffTopComponent(DiffView view) {
?? ?? ?? ?? this(view.getComponent());
?? ?? }
?? ?? public int getPersistenceType(){
?? ?? ?? ?? return TopComponent.PERSISTENCE_NEVER;
?? ?? }
?? ?? protected String preferredID(){
?? ?? ?? ?? return "DiffTopComponent"; ?? ??//NOI18N
?? ?? }
?? ?? public HelpCtx getHelpCtx() {
?? ?? ?? ?? return new HelpCtx(getClass());
?? ?? }
}

How to use Editor Module?

The editor module provides a full-featured source text editor that is integrated with the Form Editor, Explorer, compiler, and debugger. List of the main features: Syntax highlighting of java, HTML, XML and other languages. Code Completion enables to type a few characters and then display a list of suggestions appropriate in the given context that can be then used to automatically complete the expression. Word Matching enables enables to type the beginning characters of a word used elsewhere in the code and then have the editor generate the rest of the word. Abbreviations allow to expand typed text from a few predefined characters into a full word or phrase. Goto Class enables to open a Java file in the Source Editor by typing only the class name. The IDE helps to identify the correct package name for the class. The Fast Import feature enables to quickly add import statements for Java classes in the source file. Goto Declaration feature allows to quickly jump to a declaration of a variable under the cursor. Goto Source allows to open source file containing definition of a type that the variable under the cursor is of. Code folding allows to collapse sections of the code that are unimportant to the user at the given time. For example in java source the collapsable sections include imports section, inner classes, methods and javadocs.

No answer

How to use Editor Code Completion?

Code Completion provides users with a list of suggested completions for partially typed texts in the editor and various dialog input fields. The Code Completion module was created to replace the original legacy editor code completion which lacked several key requirements: Support for multiple independent code completion content providers. Implied requirement for ordering and prioritization of the completion items. Direct support for asynchronous completion result computation. Missing separation to the API and SPI and implementation parts.

API

Show or hide completion window

The API is small and it only allows to explicitly show or hide the completion window.
It's being used by code templates that need to explicitly show the code completion window when tabbing to a particular parameter.
There may be certain actions that want to ensure that the code completion is hidden at the time when they are invoked. For example the actions pasting the content of the completion item into the document.

SPI

Provide completion content by independent providers

Completion infrastructure needs to obtain the results that are then displayed in the completion window.
There are three types of displayed results related to the current caret offset:

For the purpose of obtaining these completion results CompletionProvider exists.
There may be an arbitrary number of independent completion providers for a single completion popup window.
The completion providers are registered through the xml layer into Editors/<mime-type>/CompletionProviders. Once the document with the particular mime-type gets loaded the corresponding completion providers will get instantiated and used.

Threading:
The code completion's infrastructure invokes the requests for the completion results in the AWT thread.
Therefore all the methods of the completion providers are invoked in AWT thread but they may reschedule their processing into other threads.

Provide completion results computed asynchronously

The completion provider creates a task that computes the resulting data that will then be displayed by the code completion infrastructure.
The task creation and computation are called synchronously from the AWT event dispatch thread.
However there can be potentially long-running tasks (e.g. working with MDR) that are not desirable to be run in AWT thread.
Therefore the completion infrastructure provides a listener to which the completion task notifies the results.
The support class AsyncCompletionTask allows to post the task computation into RequestProcessor.

Provide list of completion items fulfilling various requirements

The completion task computes a collection of completion items which are then collected by the completion infrastructure and displayed.
Displaying. Each completion item must be able to display itself in a JList.
Sorting. The completion items may come from different completion providers and they must be sorted before displaying. The sort order should not only be alphabetical but it should also allow a prioritization of the items according to their importance in the given context.
Actions. The interaction of the user with the completion item is done by interacting with item's input map and action map.
Documentation. The item may want to display additional detailed information in a documentation popup window.


How to use Error Stripe API?

The Error Stripe shows an overview of important information of an edited source code. It shows this information for the whole source code (regardless of its size).

Augment Annotations to be shown in the Error Stripe

Use the OpenIDE Text API.

Provide Up-to-date Status for the Error Stripe

A module in the IDE has information whether data shown in the Error Stripe is up-to-date or not. The Error Stripe may change the appearance according to this knowledge.

Implement the UpToDateStatusProvider that provides up-to-date status. Be sure that it fires PropertyChangeEvent when this status is changed.

Implement the UpToDateStatusProviderFactory that creates an instance of your UpToDateStatusProvider for a given JTextComponent and install it as described here.


How to use Editor Code Folding?

The Code Folding is part of the editor module functionality and it's responsible for hiding of the portions of the code that are less important for the user at the given time.

API Use Cases

Exploring of the Folds

The code folding structure (fold hierarchy) relates to javax.swing.JTextComponent instance in one-to-one relationship.
To find the code folding hierarchy instance for the given non-null text component the following code snippet can be used:

    JTextComponent editorComponent = ...
    FoldHierarchy hierarchy = FoldHierarchy.get(editorComponent);

Explore the Folds Hierarchy

The tree-based hierarchy has one non-removable and non-collapsable root fold that covers the whole document. It can be obtained by

    FoldHierarchy foldHierarchy = ...
    Fold rootFold = hierarchy.getRootFold();

The children folds of the root fold (or children folds) can be obtained by

    // the hierarchy must be locked prior exploration or manipulation
    hierarchy.lock();
    try {
        Fold rootFold = ...
        int foldCount = rootFold.getFoldCount();
        for (int i = 0; i < foldCount; i++) {
            Fold childFold = rootFold.getFold(i);
        }
    } finally {
        hierarchy.unlock();
    }

Index of the child in its parent can be found by

    hierarchy.lock();
    try {
        Fold rootFold = ...
        int foldIndex = rootFold.getFoldIndex(childFold);
    } finally {
        hierarchy.unlock();
    }

Collapse Nearest Fold

In the given fold hierarchy find the nearest fold right at or after the given offset and collapse it.

    hierarchy.lock();
    try {
        Fold fold = FoldUtilities.findNearestFold(hierarchy, offset);
        hierarchy.collapse(fold);
    } finally {
        hierarchy.unlock();
    }

Expand All Folds

In the given fold hierarchy expand all folds that are currently collapsed.

    FoldUtilities.expand(hierarchy, null);

Collapse All Folds of Certain Type

In the given fold hierarchy collapse all e.g. javadoc folds that are currently collapsed.
The example can be generalized to any fold type.

    FoldUtilities.collapse(hierarchy, JAVADOC_FOLD_TYPE);

Force Fold Expansion for Caret Moving Into Collapsed Fold

In the given fold hierarchy expand the fold into which the caret is going to be moved by Caret.setDot(offset).
The hierarchy must be locked and this example assumes that the underlying document is already read-locked e.g. by Document.render().

    FoldHierarchy hierarchy = FoldHierarchy.get(caretComponent);
    hierarchy.lock();
    try {
        Fold collapsed = FoldUtilities.findCollapsedFold(hierarchy, offset, offset);
        if (collapsed != null && collapsed.getStartOffset() < offset &&
            collapsed.getEndOffset() > offset) {
            hierarchy.expand(collapsed);
        }
    } finally {
        hierarchy.unlock();
    }

Start Listening on Fold Hierarchy Changes

In the given fold hierarchy start to listen on all changes done in the hierarchy.
This is actually used e.g. in the Editor's View Hierarchy that needs to refresh views based on the fold changes.

    hierarchy.addFoldHierarchyListener(new FoldHierarchyListener() {
        public void foldHierarchyChanged(FoldHierarchyEvent evt) {
            // Hierarchy does not need to be locked here
            //
            // evt.getAffectedStartOffset() and getAffectedEndOffset()
            // give text area affected by the fold changes in the event
        }
    });

Inspect Collapsed Folds in Affected Area

Listen on the hierarchy changes and refresh the views in the text area affected by the fold change.
Inspect the collapsed folds in the affected area because special views need to be created for the collapsed folds.
The actual code in the View Hierarchy is somewhat different but the one given here is more descriptive.

    hierarchy.addFoldHierarchyListener(new FoldHierarchyListener() {
        public void foldHierarchyChanged(FoldHierarchyEvent evt) {
            for (Iterator collapsedFoldIterator
                = FoldUtilities.collapsedFoldIterator(hierarchy,
                    evt.getAffectedStartOffset(),
                    evt.getAffectedEndOffset()
                );
                it.hasNext();
            ) {
                Fold collapsedFold = (Fold)it.next();
                // Create special view for the collapsedFold
            }
        }
    });

SPI Use Cases

Create a New Fold Manager

Manipulation of the folds is designed to be done by fold managers.
Those classes implement FoldManager interface in the SPI.
At initialization time they are given instance of FoldOperation through which they can create, add or remove the fold instances.

To create and use a new FoldManager instance it's necessary to

Create a New Fold by Fold Manager

Create a new fold and add it to the hierarchy. The operation is performed by the fold manager either at initialization phase (in the initFolds() which gets called automatically by the infrastructure) or at any other time when the fold manager's operation gets invoked (usually by a listener that the fold manager attaches to be notified about changes that can cause the folds structure to be changed - e.g. a parsing listener for java folds).

Operations that manipulate the hierarchy are done in terms of a valid transaction over the fold hierarchy.
Transactions allow to fire the collected changes as a single FoldHierarchyEvent at the time when they are committed.

    // In the FoldManager's context
    FoldOperation operation = getOperation();
    FoldHierarchyTransaction transaction = operation.openTransaction();
    try {
        Fold fold = operation.createFold(...);
        operation.addFoldToHierarchy(fold, transaction);
    } finally {
        transaction.commit();
    }

Remove Fold from Hierarchy by Fold Manager

Remove the existing fold from the hierarchy

    // In the FoldManager's context
    FoldOperation operation = getOperation();
    FoldHierarchyTransaction transaction = operation.openTransaction();
    try {
        Fold fold = ...
        operation.removeFoldFromHierarchy(fold, transaction);
    } finally {
        transaction.commit();
    }

How to use Editor Guarded Sections?

Guarded Sections protects user from modifying document content. The main goal is to simplify work with such a content to module writers and preserve created sections.

Add new section

In order to add a new section after the existing section, which seems to be most frequent, use:
        String sectionName = ...;
        StyledDocument doc = ...;
        GuardedSectionManager guards = GuardedSectionManager.getInstance(doc);
        GuardedSection g = guards.findSimpleSection(sectionName);
        guards.createSimpleSection("new_name", doc.createPosition(g.getEndPosition().getOffset() + 1));
       

Delete existing section

        StyledDocument doc = ...;
        GuardedSectionManager guards = GuardedSectionManager.getInstance(doc);
        GuardedSection g = guards.findSimpleSection("sectionName");
        g.deleteSection();
       

Plug guarded sections stuff into the editor

In case you want your CloneableEditorSupport to provide guarded sections you should implement the GuardedEditorSupport interface.
        private final class MyGuardedEditor implements GuardedEditorSupport {
           ...
        }
       
Further implement reading and writing of existing sections.
        protected void loadFromStreamToKit(StyledDocument doc, InputStream stream, EditorKit kit) throws IOException, BadLocationException {
            if (guardedEditor == null) {
                guardedEditor = new MyGuardedEditor();
                // remember the provider
                String mimeType = ((CloneableEditorSupport.Env) this.env).getMimeType();
                guardedProvider = GuardedSectionsFactory.find(mimeType).create(guardedEditor);
            }

            // load content to kit
            if (guardedProvider != null) {
                guardedEditor.setDocument(doc);
                Reader reader = guardedProvider.createGuardedReader(stream, "your encoding");
                try {
                    kit.read(reader, doc, 0);
                } finally {
                    reader.close();
                }
            } else {
                kit.read(stream, doc, 0);
            }
        }

        protected void saveFromKitToStream(StyledDocument doc, EditorKit kit, OutputStream stream) throws IOException, BadLocationException {
            if (guardedProvider != null) {
                Writer writer = guardedProvider.createGuardedWriter(stream, null);
                try {
                    kit.write(writer, doc, 0, doc.getLength());
                } finally {
                    writer.close();
                }
            } else {
                kit.write(stream, doc, 0, doc.getLength());
            }
        }
       
Your module should also require a proper implementation. In case of java content add to your module manifest file:
        OpenIDE-Module-Requires: org.netbeans.api.editor.guards.Java
       


How to use Editor Library?

The editor library module provides subset of editor functionality independent on the NetBeans IDE (except few specific standalone classes). List of the main features: Syntax highlighting of java, HTML, XML and other languages. Code Completion enables to type a few characters and then display a list of suggestions appropriate in the given context that can be then used to automatically complete the expression. Word Matching enables enables to type the beginning characters of a word used elsewhere in the code and then have the editor generate the rest of the word. Abbreviations allow to expand typed text from a few predefined characters into a full word or phrase. Goto Class enables to open a Java file in the Source Editor by typing only the class name. The IDE helps to identify the correct package name for the class. The Fast Import feature enables to quickly add import statements for Java classes in the source file. Goto Declaration feature allows to quickly jump to a declaration of a variable under the cursor. Goto Source allows to open source file containing definition of a type that the variable under the cursor is of. Code folding allows to collapse sections of the code that are unimportant to the user at the given time. For example in java source the collapsable sections include imports section, inner classes, methods and javadocs.

No answer

How to use Editor Library 2?

The Editor Library 2 module is a set of official APIs and SPIs, designed to replaces the original Editor Library with legacy APIs that are not properly structured and do not conform to the rules implied on the current NB APIs. The APIs currently offered in Editor Library 2 module include: editor-highlighting

At the moment the Editor Library 2 module contains only the Highlighting SPI, which use cases can be found in the org.netbeans.spi.editor.highlighting package overview.

How to use MIME Lookup API?

Each editor provides an EditorKit which controls the policy of specific MIME content type. The policy of content type should be easily registered and found via some lookup mechanism, that will provide convenient way of using it either for kit provider or base editor infrastructure. In addition to this, the policy can be inherited, (e.g. in case of embeded kits like JSP) and the content types need to be merged in this case. MIME Lookup API should provide all mentioned requierements via easy lookup query, so content type policy user need not to solve this searching and merging on its own side.

Per mime-type operation

Operation of the editor module must be parametrized by the type of the file being edited. In the past the operation was parametrized by the class of the editor kit but that did not show up as being useful enough.
It is more practical to use a string-based parametrization concretely the mime-type. Anyone can then easily register an additional functionality for the editor because it's just enough to know the right mime-type and the type of the functionality class to be implemented and the xml layer folder where the class should be registered.

Provide list of instances as lookup result

On the modules' implementation side the registered functionality must be retrieved somehow. It's necessary to instantiate the registered objects and react to module enabling/disabling which can affect validity of the registered objects.
As the most convenient solution appears to use org.openide.util.Lookup allowing to provide the registered instances as a Lookup.Result allowing to listen for changes (e.g. caused by the module enabling/disabling).
This resulted into creation of class MimeLookup extends Lookup containing static MimeLookup getMimeLookup(String mimeType).

Nested mime-types

On the lexical level the document can contain nested languages.
For example JSP document can contain pieces of java code which can further contain javadoc comment tokens with nested javadoc language.
The nested languages should allow for special settings such as fonts and colors of nested syntax coloring but even things like actions that would be active in the nested document section.
This resulted into creation of static Lookup getLookup(MimePath mimePath) method in MimeLookup.

Known clients summary

Fold Manager Factories
The editor/fold module expects to find the registered fold manager factories (org.netbeans.spi.editor.fold.FoldManagerFactory classes).

Completion Providers
The editor/completion module expects to find the registered completion providers (org.netbeans.spi.editor.completion.CompletionProvider classes).

Editor Context Menu Actions
The editor module expects to find the registered popup menu actions (javax.swing.Action classes or names of actions (i.e. value of Action.NAME attribute) present in editor kit e.g. "goto-source").

Side Bars
The editor/lib module expects to find factories for components to be placed on the sides of the editor component (org.netbeans.editor.SideBarFactory classes).

Hyperlink Providers
The editor/lib module expects to find hyperlink providers that allow connecting an open document with some other documents (org.netbeans.lib.editor.hyperlink.spi.HyperlinkProvider classes).

Code Template Processors
The editor/codetemplates module expects to find factories for code template processors (org.netbeans.lib.editor.codetemplates.spi.CodeTemplateProcessorFactory classes).

Hints Providers
The editor/hints module expects to find editor hints providers (org.netbeans.modules.editor.hints.spi.HintsProvider classes).


API Use Cases

Find class instances for the given mime-type

An API method

MimeLookup lookup = MimeLookup.getMimeLookup("text/x-java");

can be used for getting the mime specific lookup. Having this we can lookup class or template:

Object obj = lookup.lookup(LookedUpClass.class);

or

Lookup.Result result = lookup.lookup(new Lookup.Template(LookedUpClass.class));

Getting embeded mime-type specific Lookup

As an example a jsp scriptlet is used. Scriptlet in fact consists of parent "text/x-jsp" mime-type and embeded "text/x-java" mime-type. To obtain a scriptlet lookup firstly we need to get a MimePath and then get appropriate lookup:

    MimePath scriptletPath = MimePath.parse("text/x-jsp/text/x-java");
    Lookup lookup = MimeLookup.getLookup(scriptletPath);

SPI Use Cases

Providing implemented MimeLookupInitializer

It is the general way of adding mime specific object into the MimeLookup. Implementation of MimeLookupInitializer should be created and registered to default lookup via META-INF/services registration. For details, please look at the simplified TestMimeLookupInitializer in mimelookup/test/unit or LayerMimeLookupInitializer. Usage of MimeLookupInitializer is deprecated, please use MimeDataProvider instead in similar way

How to use Editor Settings?

The legacy settings system in the editor module is complicated, error prone and hard to use. It'd been created spontaneously over the years to support immediate needs at that time without paying enough attention to extensibility and interoperability. Historically any module providing editor settings needed to depend on the whole editor module. The main purpose of this project is to define API for editor settings, that is lightweight and easily extensible. The API relies on MimeLookup to provide a way of registering and looking up settings. The aim is NOT to provide an implementation of a storage for editor settings, but to define an interface between this storage and clients like <mime-type> editors, externaleditor, etc.

Accessing settings

All editor settings are mime type specific and therefore should be retrieved using MimeLookup. The following example shows how to retrieve the FontColorSettings for java files and how to get AttributeSet with coloring attributes for a particular coloring (i.e. in this case the colors used for highlighting selected text)

    MimePath mimePath = MimePath.parse("text/x-java");
    FontColorSettings fcs  = (FontColorSettings) MimeLookup.getLookup(mimePath).lookup(FontColorSettings.class);
    AttributeSet coloring = fcs.getFontColors(FontColorNames.SELECTION_COLORING);

Listening on changes

If clients need to react on changes in editor settings they can attach LookupListener to the LookupResult they got for their particular settings class from MimeLookup. The following example shows how to do it.

    MimePath mimePath = MimePath.parse("text/x-java");
    Lookup lookup = MimeLookup.getLookup(mimePath);
    LookupResult result = lookup.lookup(new Lookup.Template(FontColorSettings.class));
    
    result.addLookupListener(new LookupListener() {
        public void resultChanged(LookupEvent ev) {
            //... the client's response to the settings change
        }
    });

The FontColorSettings class implementor is responsible and will create a new instance of FontColorSettings whenever some coloring will change. This new instance will be placed in MimeLookup replacing the old one.


How to use Editor Settings Storage?

The module is an implementation of the org.netbeans.modules.editor.settings providing a settings storage on the default filesystem.

New Options Dialog

The friend API provided by this module is used only by the new options dialog. It is not expected to have any other clients or users. The API gives the options dialog a read/write access to the editor settings storage allowing it to implement UI for maintaining the settings.

Defining a coloring

Various modules need to provide predefined font a colors for text tokens from languages they support. An example of such a module is java/editor which defines colorings for tokens in java files. Defining colorings is as simple as writing an XML file with the appropriate information. The example below shows how to do that.

<?xml version="1.0"  encoding="UTF-8"?>
<!DOCTYPE fontscolors PUBLIC "-//NetBeans//DTD Editor Fonts and Colors settings 1.1//EN" "http://www.netbeans.org/dtds/EditorFontsColors-1_1.dtd">

<fontscolors>
    <fontcolor name="mylang-keyword" foreColor="0000CC" default="keyword">
        <font style="bold" />
    </fontcolor>
</fontscolors>

Please see the http://www.netbeans.org/dtds/EditorFontsColors-1_1.dtd for more details.

Defining a key binding

As well as providing predefined colorings modules need to provide predefined key bindings. This can be accomplished by writing another simple XML file.

<?xml version="1.0"  encoding="UTF-8"?>
<!DOCTYPE bindings PUBLIC "-//NetBeans//DTD Editor KeyBindings settings 1.1//EN" "http://www.netbeans.org/dtds/EditorKeyBindings-1_1.dtd">

<bindings>
    <bind actionName="goto-source" key="O-O"/>
</bindings>

Please see the http://www.netbeans.org/dtds/EditorKeyBindings-1_1.dtd for more details.


How to use Editor Utilities?

Editor Utilities module contains useful utility classes and methods used by other editor related modules.

GapList

The GapList class is a java.util.List implementation similar to java.util.ArrayList but containing a gap in its underlying array. After a first modification at a particular index the subsequent modifications around that index are cheap.
The class is suitable for storage of any elements related to editing such as positions, elements, views etc.

PriorityMutex

The PriorityMutex is a simple mutex implementation allowing to find out that a priority thread (by default Event Dispatch Thread) is waiting to enter the mutex.
It's used e.g. in editor's view hierarchy or in editor fold hierarchy.

GapBranchElement

GapList-based element implementation suitable for line elements and any other branch element types.


How to use Java EE Metadata?

The project provides a generic framework for accessing Java EE metadata models.

Accessing metadata models

A module wishing to access Java EE metadata obtains a metadata model, which is encapsulated by the MetadataModel class. The client then implements a model action, represented by the MetadataModelAction class, and executes this action in the model context by calling the model's runReadAction() method:

    MetadataModel<SomeMetadata> model = // ...
    String result = model.runReadAction(new MetadataModelAction<SomeMetadata, String>() {
        public String run(SomeMetadata metadata) {
            // ... do something with metadata, e.g.
            // compute a String value
            return value;
        }
    }
   

The way to obtain the model itself, as well as the kinds of metadata encapsulated by MetadataModel is metadata and metadata provider-specific and is not addressed by this API.

Providing metadata models

A metadata provider first defines a root class describing the metadata, e.g., SomeMetadata. Then the provider implements the MetadataModelImplementation interface and creates a MetadataModel using MetadataModelFactory. Then the provider defines a way to return the model to its clients:

    private SomeMetadataModelImplementation modelImpl = new SomeMetadataModelImplementation();
    private MetadataModel<SomeMetadata> model = MetadataModelFactory.createMetadataModel(modelImpl);

    /**
     * Call this to retrieve the model of some metadata.
     */
    public MetadataModel<SomeMetadata> getSomeMetadataModel() {
        return model;
    }

    // ... 

    private class SomeMetadataModelImplementation implements MetadataModelImplementation<SomeMetadata> {

        // ...

    }
   

Providing multiple metadata models

A metadata provider might need to provide several kinds of metadata models at once. Furthermore, since there can be many models available or for backward compatibility reasons it might be impractical to provide a method for each of the models. In this case the provider may define a method like:

    public MetadataModel<T> getMetadataModel(Class<T> clazz) {
        // ...
    }
   

The types of Class which may be passed to the method is a part of the contract between the provider and its clients.


How to use Java SE Projects?

Provides a project type for plain Java projects. J2SE projects can be created from scratch, or you can import existing Java source trees. Creates an Ant script letting you build the project (and subprojects), run it, debug it, run JUnit-format tests, and build Javadoc. GUI customizer permits easy customization of the most commonly needed project parameters. Provides code completion and other services for editing Java sources. Classpaths can include other projects, raw JARs, or configured libraries. Specific J2SE platforms may be configured.

Covered by UI specification and design document.


How to use Java Platform?

Many Java-based project types need to be able to configure the version and location of Java to be used when building and running the project. This API/SPI permits these platforms to be registered and queried, and any customizations made in an appropriate GUI and persisted to disk.

The API can be used by any code wishing to know the list of installed platforms and information about each one; typically this would be used by project type providers to implement a customizer dialog. The SPI is intended to be implemented by a few modules supply support for locating and introspecting installed platforms, for example a JDK setup wizard.


How to use Java Project Support?

Provides support infrastructure for projects working with the Java language.

Project type providers wishing to show Java packages in their logical views can use this SPI. Templates which are Java-centric can use it. Projects which wish to implement queries from the Java Support APIs can place implementations in their lookup and these will be delegated to automatically.


How to use Java Source?

XXX no answer for arch-what

XXX no answer for arch-usecases


How to use JUnit Tests?

The module makes creating, running and navigation between tests easier. (Actual test running is typically performed directly by a project type provider using Ant.)

The SPI allows to plug a project-type-specific implementation of JUnit support into NetBeans. The current NetBeans implementation only supports JUnit on J2SE project types. The SPI describes services provided by the custom JUnit support plugin.

The functionality to be plugged in comprises:

For navigation, the plugin defines mapping between source classes and the corresponding test classes (both directions). Thus it provides an additional information to the information provides by UnitTestForSourceQuery

For generation of test skeletons, the plugin actually defines the whole test skeleton generator - it generates one or more test files for a given source file.


How to use Lexer?

Lexer module provides token lists for various text inputs. Token lists can either be flat or they can form tree token hierarchies if any language embedding is present. Tokens

API Usecases

Obtaining of token hierarchy for various inputs.

The TokenHierarchy is an entry point into Lexer API and it represents the given input in terms of tokens.
    String text = "public void m() { }";
    TokenHierarchy hi = TokenHierarchy.create(text, JavaLanguage.description());

Token hierarchy for swing documents must be operated under read/write document's lock.
    document.readLock();
    try {
        TokenHierarchy hi = TokenHierarchy.get(document);
        ... // explore tokens etc.
    } finally {
        document.readUnlock();
    }

Obtaining and iterating token sequence over particular swing document from the given offset.

The tokens cover the whole document and it's possible to iterate either forward or backward.
Each token can contain language embedding that can also be explored by the token sequence. The language embedding covers the whole text of the token (there can be few characters skipped at the begining an end of the branch token).
    document.readLock();
    try {
        TokenHierarchy hi = TokenHierarchy.get(document);
        TokenSequence ts = hi.tokenSequence();
        // If necessary move ts to the requested offset
        ts.move(offset);
        while (ts.moveNext()) {
            Token t = ts.token();
            if (t.id() == ...) { ... }
            if (TokenUtilities.equals(t.text(), "mytext")) { ... }
            if (ts.offset() == ...) { ... }

            // Possibly retrieve embedded token sequence
            TokenSequence embedded = ts.embedded();
            if (embedded != null) { // Token has a valid language embedding
                ...
            }
        }
    } finally {
        document.readUnlock();
    }

Typical clients:

Using language path of the token sequence

For the given token sequence the client may check whether it's a top level token sequence in the token hierarchy or whether it's embedded at which level it's embedded and what are the parent languages.
Each token can contain language embedding that can also be explored by the token sequence. The language embedding covers the whole text of the token (there can be few characters skipped at the begining an end of the branch token).
    TokenSequence ts = ...
    LanguagePath lp = ts.languagePath();
    if (lp.size() > 1) { ... } // This is embedded token sequence
    if (lp.topLanguage() == JavaLanguage.description()) { ... } // top-level language of the token hierarchy
    String mimePath = lp.mimePath();
    Object setting-value = some-settings.getSetting(mimePath, setting-name);

Creating token hierarchy snapshot for token hierarchy over a mutable input

Token hirerarchy snapshots allow to create a snapshot of the token hierarchy at the given time and guarantee that it will not be affected by subsequent input text modifications.
Token snapshot is represented as a TokenHierarchy instance so the creation of token sequence etc. is the same like for regular token hierarchy.
    private TokenHierarchy snapshot;
    
    document.readLock();
    try {
        TokenHierarchy hi = TokenHierarchy.get(document);
        snapshot = hi.createSnapshot();
        // Possible later modifications will not affect tokens of the snapshot
    } finally {
        document.readUnlock();
    }

    ...

    document.readLock();
    try {
        TokenSequence ts = snapshot.tokenSequence();
        ...
    } finally {
        document.readUnlock();
    }

Typical clients:

Extra information about the input

The InputAttributes class may carry extra information about the text input on which the token hierarchy is being created. For example there can be information about the version of the language that the input represents and the lexer may be written to recognize multiple versions of the language. It should suffice to do the versioning through a simple integer:
public class MyLexer implements Lexer<MyTokenId> {
    
    private final int version;
    
    ...
    
    public MyLexer(LexerInput input, TokenFactory<MyTokenId> tokenFactory, Object state,
    LanguagePath languagePath, InputAttributes inputAttributes) {
        ...
        
        Integer ver = (inputAttributes != null)
                ? (Integer)inputAttributes.getValue(languagePath, "version")
                : null;
        this.version = (ver != null) ? ver.intValue() : 1; // Use version 1 if not specified explicitly
    }
    
    public Token<MyTokenId> nextToken() {
        ...
        if (recognized-assert-keyword) {
            return (version >= 4) { // "assert" recognized as keyword since version 4
                ? keyword(MyTokenId.ASSERT)
                : identifier();
        }
        ...
    }
    ...
}
The client will then use the following code:
    InputAttributes attrs = new InputAttributes();
    // The "true" means global value i.e. for any occurrence of the MyLanguage including embeddings
    attrs.setValue(MyLanguage.description(), "version", Integer.valueOf(3), true);
    TokenHierarchy hi = TokenHierarchy.create(text, false, SimpleLanguage.description(), null, attrs);
    ...

Filtering out unnecessary tokens

Filtering is only possible for immutable inputs (e.g. String or Reader).
    Set<MyTokenId> skipIds = EnumSet.of(MyTokenId.COMMENT, MyTokenId.WHITESPACE);
    TokenHierarchy tokenHierarchy = TokenHierarchy.create(inputText, false,
        MyLanguage.description(), skipIds, null);
    ...

Typical clients:

SPI Usecases

Providing language description and lexer.

Token ids should be defined as enums. For example org.netbeans.lib.lexer.test.simple.SimpleTokenId can be copied or the following example from org.netbeans.modules.lexer.editorbridge.calc.lang.CalcTokenId.
The static language() method returns the language describing the token ids.
public enum CalcTokenId implements TokenId {

    WHITESPACE(null, "whitespace"),
    SL_COMMENT(null, "comment"),
    ML_COMMENT(null, "comment"),
    E("e", "keyword"),
    PI("pi", "keyword"),
    IDENTIFIER(null, null),
    INT_LITERAL(null, "number"),
    FLOAT_LITERAL(null, "number"),
    PLUS("+", "operator"),
    MINUS("-", "operator"),
    STAR("*", "operator"),
    SLASH("/", "operator"),
    LPAREN("(", "separator"),
    RPAREN(")", "separator"),
    ERROR(null, "error"),
    ML_COMMENT_INCOMPLETE(null, "comment");


    private final String fixedText;

    private final String primaryCategory;

    private CalcTokenId(String fixedText, String primaryCategory) {
        this.fixedText = fixedText;
        this.primaryCategory = primaryCategory;
    }
    
    public String fixedText() {
        return fixedText;
    }

    public String primaryCategory() {
        return primaryCategory;
    }

    private static final Language<CalcTokenId> language = new LanguageHierarchy<CalcTokenId>() {
        @Override
        protected Collection<CalcTokenId> createTokenIds() {
            return EnumSet.allOf(CalcTokenId.class);
        }
        
        @Override
        protected Map<String,Collection<CalcTokenId>> createTokenCategories() {
            Map<String,Collection<CalcTokenId>> cats = new HashMap<String,Collection<CalcTokenId>>();

            // Incomplete literals 
            cats.put("incomplete", EnumSet.of(CalcTokenId.ML_COMMENT_INCOMPLETE));
            // Additional literals being a lexical error
            cats.put("error", EnumSet.of(CalcTokenId.ML_COMMENT_INCOMPLETE));
            
            return cats;
        }

        @Override
        protected Lexer<CalcTokenId> createLexer(LexerRestartInfo<CalcTokenId> info) {
            return new CalcLexer(info);
        }

        @Override
        protected String mimeType() {
            return "text/x-calc";
        }
        
    }.language();

    public static final Language<CalcTokenId> language() {
        return language;
    }

}
Note that it is not needed to publish the underlying LanguageHierarchy extension.
Lexer example:
public final class CalcLexer implements Lexer<CalcTokenId> {

    private static final int EOF = LexerInput.EOF;

    private static final Map<String,CalcTokenId> keywords = new HashMap<String,CalcTokenId>();
    static {
        keywords.put(CalcTokenId.E.fixedText(), CalcTokenId.E);
        keywords.put(CalcTokenId.PI.fixedText(), CalcTokenId.PI);
    }
    
    private LexerInput input;
    
    private TokenFactory<CalcTokenId> tokenFactory;

    CalcLexer(LexerRestartInfo<CalcTokenId> info) {
        this.input = info.input();
        this.tokenFactory = info.tokenFactory();
        assert (info.state() == null); // passed argument always null
    }
    
    public Token<CalcTokenId> nextToken() {
        while (true) {
            int ch = input.read();
            switch (ch) {
                case '+':
                    return token(CalcTokenId.PLUS);

                case '-':
                    return token(CalcTokenId.MINUS);

                case '*':
                    return token(CalcTokenId.STAR);

                case '/':
                    switch (input.read()) {
                        case '/': // in single-line comment
                            while (true)
                                switch (input.read()) {
                                    case '\r': input.consumeNewline();
                                    case '\n':
                                    case EOF:
                                        return token(CalcTokenId.SL_COMMENT);
                                }
                        case '*': // in multi-line comment
                            while (true) {
                                ch = input.read();
                                while (ch == '*') {
                                    ch = input.read();
                                    if (ch == '/')
                                        return token(CalcTokenId.ML_COMMENT);
                                    else if (ch == EOF)
                                        return token(CalcTokenId.ML_COMMENT_INCOMPLETE);
                                }
                                if (ch == EOF)
                                    return token(CalcTokenId.ML_COMMENT_INCOMPLETE);
                            }
                    }
                    input.backup(1);
                    return token(CalcTokenId.SLASH);

                case '(':
                    return token(CalcTokenId.LPAREN);

                case ')':
                    return token(CalcTokenId.RPAREN);

                case '0': case '1': case '2': case '3': case '4':
                case '5': case '6': case '7': case '8': case '9':
                case '.':
                    return finishIntOrFloatLiteral(ch);

                case EOF:
                    return null;

                default:
                    if (Character.isWhitespace((char)ch)) {
                        ch = input.read();
                        while (ch != EOF && Character.isWhitespace((char)ch)) {
                            ch = input.read();
                        }
                        input.backup(1);
                        return token(CalcTokenId.WHITESPACE);
                    }

                    if (Character.isLetter((char)ch)) { // identifier or keyword
                        while (true) {
                            if (ch == EOF || !Character.isLetter((char)ch)) {
                                input.backup(1); // backup the extra char (or EOF)
                                // Check for keywords
                                CalcTokenId id = keywords.get(input.readText());
                                if (id == null) {
                                    id = CalcTokenId.IDENTIFIER;
                                }
                                return token(id);
                            }
                            ch = input.read(); // read next char
                        }
                    }

                    return token(CalcTokenId.ERROR);
            }
        }
    }

    public Object state() {
        return null;
    }

    private Token<CalcTokenId> finishIntOrFloatLiteral(int ch) {
        boolean floatLiteral = false;
        boolean inExponent = false;
        while (true) {
            switch (ch) {
                case '.':
                    if (floatLiteral) {
                        return token(CalcTokenId.FLOAT_LITERAL);
                    } else {
                        floatLiteral = true;
                    }
                    break;
                case '0': case '1': case '2': case '3': case '4':
                case '5': case '6': case '7': case '8': case '9':
                    break;
                case 'e': case 'E': // exponent part
                    if (inExponent) {
                        return token(CalcTokenId.FLOAT_LITERAL);
                    } else {
                        floatLiteral = true;
                        inExponent = true;
                    }
                    break;
                default:
                    input.backup(1);
                    return token(floatLiteral ? CalcTokenId.FLOAT_LITERAL
                            : CalcTokenId.INT_LITERAL);
            }
            ch = input.read();
        }
    }
    
    private Token<CalcTokenId> token(CalcTokenId id) {
        return (id.fixedText() != null)
            ? tokenFactory.getFlyweightToken(id, id.fixedText())
            : tokenFactory.createToken(id);
    }

}

The classes containing token ids and the language description should be part of an API. The lexer should only be part of the implementation.

Providing language embedding.

The embedding may be provided statically in the LanguageHierarchy.embedding() see e.g. org.netbeans.lib.lexer.test.simple.SimpleLanguage.

Or it may be provided dynamically through the xml layer by using file named with the token-id's name with ".instance" suffix located in "Editors/language-mime-type/embed" folder. The file should instantiate the language description for the embedded language.


How to use Master Filesystem?

MasterFileSystems is just implementation of FileSystem provided in standalone module including implementation of URLMapper that resolves file protocol and is responsible for conversion from URL into FileObject and vice versa. Implementation just delegates to the other FileSystem implementations (LocalFileSystem, VCSFileSystem, ...) and playes the role of arbiter that controls instantiation and life cycle of provided FileObjects. MasterFileSystemAPI

MasterFileSystem is just implementation of FileSystem. There are no special use cases. FileObjects erlier returned from URLMapper or FileUtil.fromFile provided by LocalFileSystem or CvsFileSystem will be now provided by MasterFileSystem. There will be guaranteed that there won't be more instances of FileObject addressing one java.ioFile.

How to use NB JUnit?

Module contains NetBeans extension to JUnit. It is a library used in XTest and library wrapper module.

Tests typically extends NbTestCase.


How to use Options Dialog and SPI?

This module contains implementation of Options Panel and simple SPI.

Register top level Options Panel

Client can install new panel to Options Dialog - see JavaDoc for OptionsCategory class.

Register panel to Advanced Options Panel

Client can install new panel to Advanced Options Panel - see JavaDoc for AdvancedOption class.


How to use Ant-Based Project Support?

Provides the basic infrastructure by which Ant-based projects can be created, read and write configuration parameters and properties from/to disk, satisfy common queries and interfaces, etc. See Javadoc and build system design document.

Mostly an SPI for use by project type providers to create the project type. Also includes a small API/SPI for other projects to find what Ant build steps are necessary to create a certain build product, for use in inter-project dependencies.

Ant project support faq:

How to use support for storing project properties?

Q: I'm creating a customizer (properties dialog) for my project type. I wan't to use the support for simple data types. What do I need to do?

You basicaly need to do two things. First create the representation of the project properties which can be used in the GUI. Second at some time convert the objects back to the ANT properties form and store them into the project.


How to use External Libraries?

Permits libraries to be defined, customized, and stored by the user for reuse in multiple projects. For example, a Java JAR library has a classpath (usually one JAR), and an optional source path and Javadoc path that may be used for development-time features.

Different technology support modules will supply definitions of different kinds of libraries, e.g. Java JARs, that may be reused in user projects. Modules may register library predefinitions to wrap libraries they bundle. Project type providers can refer to available libraries in customizer dialogs.


How to use Project API?

Provides a generic infrastructure for modelling projects. Documentation available in the Javadoc. The build system design overview describes the basic purpose of modelling projects.

The SPI should be used by modules defining particular project types, e.g. the J2SE project type. The API is to be used primarily by GUI infrastructure and some queries, though other module code may on occasion need to refer to the API.


How to use Project UI API?

The module supplies the APIs for the basic, generic UI infrastructure for projects: list of opened projects, main project, basic project-sensitive actions, template wizards, etc.

The main use case is for project type providers to supply logical views and customizers for the project. Also for template providers to create project-aware file templates. Can also get a list of open projects, create different kinds of project-related actions, and select projects on disk.


How to use General Queries API?

General kinds of queries between modules. Queries are one way of solving the intermodule communication problem when it is necessary for some modules to obtain basic information about the system (e.g. whether a particular file is intended for version control) without needing direct dependencies on the module providing the answer (e.g. the project type which controls the file). Details are covered in the Javadoc.

Particular use cases are enumerated in the Javadoc for each query API. Usage consists of simple static method calls. Potentially a wide variety of modules could use these queries; implementations are typically registered by project type providers, though also by Java library and platform implementations.


How to use Refactoring API?

Refactoring module allows developer to do high level code transformations aka refactorings.

Refactoring module provides API for refactorings. The idea is that at least the most elementary set of refactorings should be available via an API, so that the refactorings could be invoked programmatically. This is particulary useful when creating more complex refactorings. These can then be composed from the primitive refactorings accessible via an API using delegation. As an example we can use a simple rename refactoring. When renaming a class in a J2SE environment, simple rename refactoring (which renames all occurrences of the class) is sufficient. However in a J2EE environment, renaming a class may require renaming of other classes to preserve the functionality of the application (e.g. synchrinized renaming a home and remote interface for an EJB). This could be achieved by creating a more complex rename refactoring composed of two simple rename refactorings (one for each class to be renamed).

When analyzing flow of various refactorings, we have found out that the steps in the flow are very common for all refactorings. The flow is as follows: To make the implementation of various refactorings consistent, the refactoring module provides an API and UI framework that allows these refactorings to be plugged in. This framework enforces the above flow. Using this framework (set of SPI and API) the refactoring implementor can focus purely on the things specific to that particular refactoring (specific pre-conditions checks, parameters checks, implementation of changes, etc.) and leave the functionality that is common for all refactorings (implementation of the flow) up to the framework.

It is quite common that some modules need to be able to affect the behavior of a refactoring. There are 4 typical use-cases when this is desirable:
  1. A module wants to implement refactoring features for their own elements. For instance Java Refactoring module wants to implement Refactoring for Java elements.
  2. A module wants to participate in existing refactoring. E.g. refactoring of java files requires refactoring of non-java files in J2EE area. When a code is refactored, these non-java files need to be refactored too. We can mention JSP files or deployment descriptors as an example.
  3. A module introduces some hidden relationships between several elements. E.g. a single logical EJB consists of several physical classes. When one of these classes are refactored, the other classes need to be refactored as well.
  4. A module generates some derived code into the guarded blocks. In such case it is desirable that the provider of the guarded block refactors the guarded code, since the refactoring module itself has no knowledge of where the guarded code comes from.
The refactoring module provides hooks for other modules - an SPI that allows other modules to participate in refactorings. The modules can participate on all refactoring phases from "preCheck" (checking preconditions), through "checkParameters" (checking validity of refactoring parameters) to "prepare" (collecting changes). Use-cases number 1), 2) and 3) are covered by the same SPI (interfaces RefactoringPluginFactory and RefactoringPlugin). The forth use-case (guarded blocks) are covered by a separate set of interfaces, since for this use-case the module does not need to participate in all refactoring phases. The refactoring framework itself automatically detects that a given change points to a code in guarded blocks and requests all registered guarded block providers to handle that situation.

The rest of this section provides simple orientational examples of API/SPI usage.

Refactoring API can be used for programmatical invocation of refactorings and for pluging ui for these refactorings in.

Refactoring API Example:

Intention: Programatically rename java filecom/company/Test.java to com/company/RenamedTest.java and update references.

  	FileObject fo = ...com/company/Test.java...
        RefactoringSession renameSession = RefactoringSession.create("Rename Class");
        refactoring = new RenameRefactoring(fo);
        Problem pre = refactoring.preCheck();
        if (pre!=null && pre.isFatal()) {
     	  //fatal problem in precheck
     	  return;
        }
        refactoring.setNewName("RenamedTest");
        Problem p = refactoring.prepare(renameSession);
        
        if (p!=null && p.isFatal()) {
     	  //fatal problem in precheck
     	  return;
        }
        
        renameSession.doRefactoring(true /* saveAll */);

Refactoring SPI permit other modules to plug into existing refactorings and allow them to participate. Client of SPI must implement factory class RefactoringPluginFactory and register this class into Lookup.

Refactoring SPI Example 1:

Intention: Create a plugin for RenameRefactoring, which will participate in existing refactoring (let say in java refactoring) and renames references in XML files.

//implementation of factory class
public class J2EERefactoringFactory implements RefactoringPluginFactory {
    
    public RefactoringPlugin createInstance(AbstractRefactoring refactoring) {
    
        if (refactoring instanceof RenameRefactoring) {
            //return our custom instance for RenameRefactoring
            if (wantToParticipate(refactoring.getRefactoredObject())
                return new J2EERenameRefactoringPlugin((RenameRefactoring) refactoring);
        }
        
        if (refactoring instanceof ... {
            ...
        }

        return null;
    }
    
}
It is necessary to register J2EERefactoringFactory in the lookup:
META-INF/services/org.netbeans.modules.refactoring.spi.RefactoringPluginFactory

and implement RefactoringPlugin interface:

//implementation of RefactoringPlugin
public class J2EERenameRefactoringPlugin implements RefactoringPlugin {
    
    private RenameRefactoring refactoring;
    
    public J2EERenameRefactoringPlugin(RenameRefactoring refactoring) { 
        this.refactoring = refactoring;
    }
 
    public Problem preCheck() {
        ...
    }
    
    public Problem checkParameters() {
        ...
    }
    
    public Problem fastCheckParameters() {
        ...
    }
    
    public void cancelRequest() {
        ...
    }
    
    public Problem prepare(RefactoringElementsBag refactoringElements) {
        RenameRefactoring renameRefactor = ((RenameRefactoring)refactoring);
        Object element = renameRefactor.getRefactoredObject();
        if (...) {
           ...
           //lets add our RefactoringElements for usages found in XML files 
           refactoringElements.add(refactoring, new XMLRenameRefactoringElement());
        }
        return null;
    }

    public class XMLRenameRefactoringElement implements RefactoringElementImplementation {

        public void performChange() {
            //do change
        }
    }
Refactoring SPI Example 2: Intention: Create a module, which will add Rename... to html files First you must create your ActionsImplementationProvider:
public class MyProvider extends ActionsImplementationProvider {
    
  public boolean canRename(Lookup lookup) {
    Node[] nodes = lookup.lookupAll(Node.class);
    if (..one node selected and the node belongs to html...)
      return true;
    else 
      return fals;
 }

  public Runnable renameImpl(Lookup selectedNodes) {
    Node[] nodes = lookup.lookupAll(Node.class);
    final FileObject fo = getFileFromNode(nodes[0]);
    return new Runnable() {
      public void run() {
        UI.openRefactoringUI(new RenameRefactoringUI(fo);
      }
    }    
  }
}
And of course your own RefactoringPlugin and RefactoringPluginFactory see Refactoring SPI Example 1 and Refactoring SPI Example 2
Refactoring SPI Example 3 Module wants to implement it's own refactoring preview tree: Register your own TreeElementFactoryImplementation into META-INF/services if you want to build your own RefactoringPreview tree. For instance Java Refactoring understand Java - specific objects e.g. Projects, Groups, Methods etc.
public TreeElement getTreeElement(Object o) {
.
.
if (o instanceof SourceGroup) {
  return new SourceGroupTreeElement((SourceGroup)o);
} else if (o instanceof SomethingFromJava) {
   return new SomethingFromJavaTreeElement((SomethingFromJava) o);
}
TreeElement is then displayed in refactoring preview panel.


Other usecases are docummented in javadoc.

How to use Command Line Parsing API?

GetOpts like infrastructure to parse command line arguments with the cooperative participation of various modules.

Just Parse the Command Line

There needs to be a simple API for someone who has an array of strings and wants to parse them. One does not need to search for providers, just ask the infrastructure to do the parse and get the result.

The correct way to achieve this is to call CommandLine.getDefault().process(args).

Short and Long options with or without an argument

The standard getopts supports short form of options - e.g. a dash followed with one letter - or long form using two dashes followed with a word. Moreover the long form is optimized for abbrevations. If there are no conflicts between multiple options, then one can only use double dash followed with a prefix of a long option.

One can create an Option by calling any of its factory methods (like withoutArgument) and provider char for the one letter option and/or string for the long getopts option.

Options with or without an argument

There are three types of options. Those without an argument, those with a required one and those with optional one. Each one can be created by appropriate factory method in the Option class.

Support for --

The getopts compliant command line parsers support --. If these characters do appear on the command line, the rest of it is treated as extra arguments and not processed. The sendopts infrastructure supports this as well.

Multiple Independent CLI Handlers

The handlers for the options need not know about each other and still have to be able to process the command line successfully. Any module which wishes to provide its own options can register its OptionProcessor into a file META-INF/services/org.netbeans.spi.sendopts.OptionProcessor in its JAR file.

Extensible Options Set

Q: How shall one write an OptionProcessor that recognizes set of basic options, however contains one open slot? The processor wants other modules to provide recognizers for that slot and wants to communicate with them. For example, by default the processor recognizes option --channel <name_of_the_channel> which describes a source of data, and stores such data into a sink. There can be multiple sinks - discard the output, save it to file, show it on stdout, stream it to network. The processor itself can handle the copying of data, but does not itself know all the possible sink types.

To implement OptionProcessor like this one shall define an additional interface to communicate with the sink providers:

   package my.module;
   public interface SinkProvider {
     /** gets the option (even composite) that this sink needs on command line */
     public Option getOption();

     /** processes the options and creates a "sink" */
     public OutputStream createSink(Env env, Map<Option,String[]> values) throws CommandException;
   }
       

Other modules would then registered implementations of this interface in the META-INF/services/my.module.SinkProvider files. The OptionProcessor itself would just look all the implementations up, queried for the sinks, and then did the copying:

   class CopyingProvider extends OptionProvider {
     public Option getOption() {
        List<Option> l = ...;
        for (SinkProvider sp : Lookup.getDefault().lookupAll(SinkProvider.class)) {
          l.add(sp.getOption());
        }

        // we need only one provider to be present
        Option oneOfSinks = OptionGroups.oneOf(l.toArray(new Option[0]));

        // our channel option
        Option channel = ...;

        // the channel option needs to be present as well as a sink
        return OptionGroups.allOf(channel, oneOfSinks);
     }

     public void process(Env env, Map<Option,String[]> values) throws CommandException {
        OutputStream os = null;
        for (SinkProvider sp : Lookup.getDefault().lookupAll(SinkProvider.class)) {
          if (values.containsKey(sp.getOption())) {
            os = sp.createSink(env, values);
            break;
          }
        }
        if (os == null) {
          throw CommandException.exitCode(2);
        }

        // process the channel option and
        // handle the copying to the sink os
     }
   }
       

Another possible approach how to allow sharing of one option between multiple modules is to expose the option definition and its handling code as an interface to other modules, and then let the modules to write their own OptionProcessors. Necessary condition is that each of the processor is uniquely identified by some additional option, so when the shared option appears the infrastructure knows which processor to delegate to. This is demonstrated in the SharedOptionTest which basically does the following:

   /** the shared option, part of an interface of some module */
   public static final Option SHARED = ...;
   /** finds value(s) associated with the SHARED option and 
   * creates a JPanel based on them */
   public static JPanel getSharedPanel(Map<Option,String[]> args) { ... }
       

Then each module who wishes to reuse the SHARED option and the factory method that knows how to process their values for their own processing can just:

  public static final class ShowDialog extends OptionProcessor {
    private static final Option DIALOG = Option.withoutArgument('d', "dialog");

    protected Set<Option> getOptions() {
        // the following says that this processor should be invoked
        // everytime --dialog appears on command line, if the SHARED
        // option is there, then this processor wants to consume it 
        // as well...
        return Collections.singleton(Option.allOf(DIALOG, Option.anyOf(SHARED)));
    }

    protected void process(Env env, Map<Option, String[]> optionValues) throws CommandException {
        JPanel p = getSharedPanel(optionvalues);
        if (p == null) {
           // show empty dialog
        } else {
           // show some dialog containing the panel p
        }
    }
  }
       

The other modules are then free to write other processors refering to SHARED, for example one can write ShowFrame that does the same, just shows the panel in a frame, etc. The infrastructure guarantees that the exactly one provider which matches the command line options is called.

Printing Full Help Text

Althrough the handlers are provided by independent parties, it must be possible to generate resonable and consistent help description from all of them, so for the end user it appears as well formated and easily understandable. That is why every option can be associated with a short description providing info about what it is useful for using Option.shortDescription method. To get the description for all available options one can use CommandLine.getDefault().usage(java.io.PrintWriter).

Finding and Reporting when Options Are Not Correct

In case the command line cannot be processed a clean error for programmatic consumation and also one that can be shown to the end user of the command line must be given. This is handled by throwing CommandException with appropriate message description and exit code.

Processing Extra Command Line Arguments

There can be non-option arguments in the command line and they can freely mix with the option ones. For example the getopts would treat the following command line arguments as the same:
       --open X.java Y.java Z.txt
       X.java Y.java --open Z.txt
       
if the option open handles extra arguments. The sendopts infrastructure must distinquish between them and pass the non-option ones to the only one handler (active because it processed an option) that knowns how to parse them. It is an error if more than one or no handler expresses an interest in extra arguments and those are given. One can register such option by using the Option.additionalArgument factory method.

Handling Input and Output

Handler's shall not use the input and output streams directly for their execution, they should rely on the framework provided ones. This allows NetBeans based application to transfer the I/O from second started instance to the master one which is already running. From the client side there is the CommandLine.getDefault().parse methods taking additional arguments like input and output streams. This gets transfered to providers as an Env argument of their methods.

Returning Exit Code

When Handler's get execute (in the order defined by the order of options on the command line), each of them can either execute successfully, or fail. If a handler succeeds, next one is executed, if it fails, the execution is terminated and its return code is returned to the caller. The error can be notified by creating and throwing CommandException.exitCode(int errorCode).

Processing Only Extra Command Line Arguments

Sometimes it is desirable to process non-option arguments like file names without providing any option. Handlers can declare interest in such arguments. It is an error if such non-options are provided and no or more than one handler is around to handle them. One can create such option by using Option.defaultArguments factory method.

Only those processor need to process the options are created

For purposes of usage in NetBeans, it is needed to non initialize those handlers that are not really needed to process certain command line. The infrastracture decides which of them are going to be needed and instantiates only those. Given the amount of providers in current NetBeans IDE, this is not supported yet.

Complex Option Relations

Certain CLI processors may need more than one option before they can process the input. For example it is necesary to tune the radio and then also tell what to do with the output. It is unconvenient to process that as one option with argument(s), that is why one can use the OptionGroups.allOf, OptionGroups.someOf, for example like:
class PP extends OptionProcessor {
    private static Option tune = Option.requiredArgument(Option.NO_SHORT_NAME, "tune");
    private static Option stream = Option.requiredArgument(Option.NO_SHORT_NAME, "stream");
    
    public Set<Option> getOptions() {
      return Collections.singleton(
        OptionGroups.allOf(tune, stream)
      );
    }
    
    public void process(Env env, Map>Option,String[]> values) throws CommandException {
        String freq = values.get(tune)[0];
        String output = values.get(stream)[0];

        // XXX handle what is needed here
    }
}
When the two options are registered and command line like --tune 91.9 --stream radio1.mp3 is being processed, the PP's process method is going to get called with values 91.9 and radio1.mp3.

Alternative Options

Sometimes there may different ways to specify the same option and just one of them or none of them can be provided at given time. For example is there is a way to tune the radio with direct frequency or with name of the station. Just one can be provided and one is needed. This can be specified by using OptionGroups.oneOf factory methods:
Option freq = Option.requiredArgument(Option.NO_SHORT_NAME, "tune");
Option station = Option.requiredArgument(Option.NO_SHORT_NAME, "station");
Option tune = OptionGroups.oneOf(freq, station);    
The option tune then signals that just one of the station or freq options can appear and that they both are replaceable.


How to use UI Gestures Collector?

XXX no answer for arch-what

Gather information about UI gestures

Primary purpose of this module is collect information about the user actions that take place in the running NetBeans based application.

The info about various UI events in the system is collected thru listening on log records send to Logger.getLogger("org.netbeans.ui") . Any code in the system can get instance of this logger or any child logger and send useful informations to it. At the end of the session the last few hundereds events is taken and displayed to the user for further processing.

Presenting usage statistics

Important part of the behaviour of this module is the ability to cooperate with information analyzing tools and present their results. This is done thru special HTTP contracts, where the module reads and understands various server responses and is able to open browser after submitting data to analysis.

There is a key in the org.netbeans.modules.uihandler.Bundle that specifies the location of the page on a server one shall query and display to the user when the module is about the submit data for analysis. The page pointed by WELCOME_URL can contain any XHTML text, but it also should contain a <form/> tag that defines <input type="hidden" name="submit" value="localizedName"/>. The localizedName is then going to be used for a button for the dialog displaying the summary. When this button is invoked, the "action" URL is then feed with data from the UI logs. The server is then supposed to process the data, create some analytics pages and return them back to the client. If the returned page contains tag like <meta http-equiv='Refresh' content='3; URL=somepage'> an (external) browser is opened with the specified URL and the user can then interact directly with the server, thru pages it serves. For testing purposes one can specify different URL for upload of files, by setting org.netbeans.modules.uihandler.Submit property when invoking NetBeans.

Adding own UI gestures

The base module is in fact just an infrastructure which collects data about UI gestures, but the actual gestures need to be delivered to it somehow. Here is the description of the ways how one can extend own modules to cooperate with this UI gestures infrastructure.

To feed own data about special UI gestures one can just create own Logger.getLogger("org.netbeans.ui.ownname") and send own log records to it. The format of the log messages shall follow the one described by the structured logging document, e.g. the LogRecord shall have associated ResourceBundle and the record's getMessage shall point to a key in that bundle. there is an extension to the regular formatting done by the logging formatter that, in order to achieve nicer appearance to the user, allows each record to be associated with an icon. Just define MSG_KEY_ICON_BASE in the bundle associated with the LogRecord (where the MSG_KEY is the string returned by record.getMessage()) and the value is then going to be used for the Node representing the UI gesture.

Sometimes direct logging may not be possible. For example for performance data it might be meaningful to collect the information over a longer time period and only at the end output some statistics. This is supported as well. Just implement and register one of the interfaces from the API of this module and properly register them and the implementation will be called when the logger module is activated or when the user finishes the work with the application. In order to keep dependencies clean, it is strongly adviced to make modules that implement this API eager, so they get enabled as soon as the UI logger module is enabled.

These usecases are realized as described in here in provided UI specification.


How to use Debugger Core - UI?

The debuggercore module (Debugger Core UI) contains shared UI components for all debugger implementations, and defines some SPI for sharing of them.

UseCase I. - Install and use CPP debugger plug-in to NetBeans + Java Debugger.

CPP debugger plug-in installs support for debugging of some new language to the NetBeans IDE, and some new debugging engine. This implementation of debugger should share UI components (actions, Debugger Views, ...) with default NB Java Debugger. It should share basic debugger model too - notion of current context, current session, thread, call stack line, ...

CPP debugger plug-in installs:

UseCase II. - Install and use JSP debugger plug-in to NetBeans + Java Debugger.

JSP debugger plug-in installs support for debugging of some new language to the NetBeans Java Debugger. It does not contain a new debugger engine, but it delegates to standard NB Java debugger. So it does not depends on Debugger Core API only, but it depends on JavaDebugger API too.

JSP debugger plug-in installs:

UseCase III. - Install and use J2EE debugger plug-in to NetBeans + Java Debugger.

J2EE debugger plug-in installs some enhancements to the standard Java Debugger. It does not contain a new debugger engine or language support. So it does not depends on Debugger Core API only, but it depends on JavaDebugger API too.

J2EE debugger plug-in installs:

UseCase IV. - Install and use DBX debugger plug-in to NetBeans.

DBX debugger plug-in installs support for debugging of some new language (CPP) to the NetBeans IDE, and some new debugging engine. But it contains debugger engine for Java debugging too. DBX debugger engine has its own session management (or will have in the next versions). One debugger engine can manage more than one sessions. One engine supports debugging in more than one language.

UseCase V. - Implement Debugger Core UI module on top of Debugger Core API / SPI.

Debugger Core UI needs:


How to use Navigator API?

Navigator module is a base API module which provides: A place for modules to show structure/outline of their documents Ability for modules to show their view only when special document(node) is active in the system UI for switching between multiple views available for currently active document(node) Coalescing of fast coming selected node changes to show content for

Basic Usage Steps

In order to plug in a view into Navigator UI for certain document (data) type, module writers need to complete following steps:

Writing NavigatorPanel implementation

Implementing NavigatorPanel interface is easy, you can copy from template basic implementation BasicNavPanelImpl.java.

Advices on important part of panel implementation:

Registering NavigatorPanel impl in a layer

Declarative registration of your NavigatorPanel impl connects this implementation with specific content type, which is type of the document, expressed in mime-type syntax, for example 'text/x-java' for java sources. Infrastructure will automatically load and show your NavigatorPanel impl in UI, when currently activated Node is backed by primary FileObject whose FileObject.getMimeType() equals to content type specified in your layer.

Writing layer registration itself is easy, you can again copy from template layer Basic Navigator Registration Layer.

Additional important info:

Advanced Content Registration - Linking to Node's Lookup

There may be situations where linking between your Navigator view and activated Node's primary FileObject is not enough or not possible at all. This simply happens when the data you want to represent in Navigator are not accessible through primary FileObject or DataObject. Usual example is Multiview environment, where more views of one document exists.

The solution is to bind content of your Navigator view directly to your TopComponent. Then, whenever your TopComponent gets activated in the system, Navigator UI will show th content you connected to it.

Steps to do:

Programmatic activation of NavigatorPanel

Programmatic activation of specific navigator panel activates and shows navigator panel in navigation area, as if user had selected the panel manually. API clients are expected to use programmatic activation to activate/select preferred panel from a set of available panels.

Example: Several TopComponents in multiview arrangement, TopComponentA and TopComponentB. Both components provide the same NavigatorLookupHint impl, which is recognized by two providers NavigatorPanelA and NavigatorPanelB. Now when TopComponentA becomes activated (has a focus), it's desirable to select/show NavigatorPanelA from navigator panels. On the other side, when TopComponentB is activated, NavigatorPanelB should be activated automatically.

Steps to do to activate panel programmatically:

Setting activated node of Navigator window

Sometimes clients need to alter activated Nodes of Navigator window, to better represent Navigator area content within the whole application. See TopComponent.getActivatedNodes() and TopComponent.Registry.html#getActivatedNodes() to find out what activated nodes of TopComponent and whole system mean.

Use Case Example: NavigatorPanel implementation shows list or tree of some Nodes in Navigator area. When user selects a Node in the list or tree, it is desirable to show selected Node's properties in Properties window and enable proper actions in main menu. Exactly this can be done by presenting Node selected in the list/tree as activated Node of Navigator window.

Steps to specify activated Nodes of Navigator window:

Adding UndoRedo support to the navigation view

Some complex navigation views need support for undoing and redoing edit changes done either directly in the view or in document which the view is representing.

Steps to support undo and redo in navigation view:

Removing active Node/DataObject related NavigatorPanels from Navigator window

In certain situations it's not desired to show NavigatorPanel implementations related to DataObject of active Node in Navigator window. Typically you need to have active Node of some type, so that actions in the system works properly. But you don't want to show NavigatorPanels that "come" with such active Node.

Steps to remove such NavigatorPanels:

How to use Common Palette?

The project implements a new component palette that will be reused by other projects. The new palette should provide a common look and feel for Form editor, Mobility, J2EE and possible other modules as well. UI draft specification is available at http://ui.netbeans.org/docs/ui/palette/index.html

Palette Content

The Common Palette content is a two-level hierarchy. The top-most level are Categories, the Category children are Items. It's possible to select (highlight) items in the palette panel using a mouse or keyboard and then inserted/dropped into an editor that supports the palette.

The palette content can come from two different sources:

Basic usage

The following steps must be taken if a module wants to define its own palette content as a hierarchy of folders and files in its XML layer:

When an item is selected in the palette and user clicks into the editor window then the module can ask for selected item by calling PaletteController.getSelectedItem(). This method returns a Lookup that holds object(s) representing the selected item. After the item is inserted into the editor window the module may clear palette's selection (PaletteController.clearSelection()) or leave the item selected to implement 'multi drop' insertion scenario.

Filtering

It is possible to filter palette content and hide some categories and/or items from the user by extending PaletteFilter class.

       class MyPaletteFilter extends PaletteFilter {

            public boolean isValidItem(Lookup lookup) {
                Node itemNode = (Node)lookup.lookup( Node.class );
                return isItemVisibleInCurrentEditorContext( itemNode );
            }

            public boolean isValidCategory(Lookup lookup) {
                Node categoryNode = (Node)lookup.lookup( Node.class );
                return isCategoryVisibleInCurrentEditorContext( categoryNode );
            }

            private boolean isItemVisibleInCurrentEditorContext( Node item ) {
                boolean res = true;
                //check current cursor positions and/or item type and decide whether
                //the item is valid, i.e. can be selected and dropped into editor
                return res;
            }

            private boolean isCategoryVisibleInCurrentEditorContext( Node item ) {
                boolean res = true;
                //check current cursor positions and/or category type and decide whether
                //the category is valid, i.e. its items can be selected and dropped into editor
                return res;
            }
          

Then initialize the palette using the following method:

                MyPaletteFilter filter = new MyPaletteFilter();
                PaletteController controller = PaletteFactory.createPalette( "MyPalette", new MyPaletteActions(), filter, null );
          

It is necessary to call PaletteController.refresh() to refresh and repaint the palette window whenever the filtering condition has changed:

              myPaletteFilter.setShowSomeSpecialCategories( false );
              paletteController.refresh();
          

Default Settings

The initial state of the palette can be overridden by setting appropriate attributes to palette model. The list of supported attributes is defined in PaletteController class. If the palette model is create from Nodes then the attributes are extracted by calling Node.getValue() method on the root Node and category and item nodes. If the palette model is defined as folders and files in the layer then the attributes are extracted by calling FileObject.getAttribute().

In the example below the palette will not show item names initially (only icons are visible), the user can change this in palette's context menu. Category1 is read-only therefore the user cannot remove it. Category2 is not initially visible, the user can change this in palette's customizer.

      <filesystem>
          <folder name="MyModulePalette">
              <attr name="showItemNames" stringvalue="false"/>

              <folder name="Category1">
                  <attr name="isReadonly" stringvalue="true"/>

                  <file name="PaletteItem_1.myitem" url="palette/PaletteItem_1.myitem" />
                  <file name="PaletteItem_2.myitem" url="palette/PaletteItem_2.myitem" />
                  <file name="PaletteItem_3.myitem" url="palette/PaletteItem_3.myitem" />
              </folder>

              <folder name="Category2">
                  <attr name="isVisible" stringvalue="false"/>

                  <file name="PaletteItem_4.myitem" url="palette/PaletteItem_4.myitem" />
                  <file name="PaletteItem_5.myitem" url="palette/PaletteItem_5.myitem" />
                  <file name="PaletteItem_6.myitem" url="palette/PaletteItem_6.myitem" />
              </folder>
          </folder>
      </filesystem>
            

Adding categories and items at runtime

It is possible to add new palette categories and/or palette item at runtime when the palette window is already visible.

Adding a new category is very straight-forward, it basically means creating a new folder under palette's root folder in XML layer:

        FileSystem fs = Repository.getDefault().getDefaultFileSystem();
        FileObject paletteRoot = fs.findResource( "MyModulePalette" );
        paletteRoot.createFolder( "NewCategory" );
        

Adding a new item is a similar task:

        FileObject paletteRoot = Repository.getDefault().getDefaultFileSystem().findResource( "MyPalette" );
        FileObject targetCategoryFO = paletteRoot.getFileObject( "CategoryName" );
        DataFolder targetCategoryDF = DataFolder.findFolder( targetCategoryFO );
        DataObject dobj = (DataObject)itemNode.getLookup().lookup( DataObject.class );
        dobj.copy( targetCategoryFolder );
        

Please refer to Nodes API in case the palette content is defined as a hierarchy of arbitrary Nodes.

Palette content for text-based editors

The following steps must be taken when writing the item using the support provided by this module:

  1. Create XML file with item definition according to the editor-palette-item-1_0.dtd.
  2. Register it in the editor's layer file (see Basic usage).
  3. Provide custom item implementation of the ActiveEditorDrop interface if needed. I must be referenced from the definition file.


How to use TreeTableView Model?

The debuggercore/ViewModel module (View Model) allows to share one TreeTableView among different modules.

Used by debugger to display various information - threads, call stack, variables, etc.

How to use Look & Feel Customization Library?

The plaf library consists primarily of code that used to be in core. What it does: Installs a custom look and feel if a custom look and feel class is passed to it Sets the correct fonts in the Swing UIDefaults if a custom fontsize is desired for the application's UI Loads a UI theme if a URL for the theme file (no format changes since NetBeans 3.4) is passed to it Installs custom UI keys and values used by other components of NetBeans, such as colors and UI delegate class names used by other parts NetBeans. Examples of these: Tab control UI delegate class name, depending on the look and feel, for the window system Definitions of colors which the tab control, property sheet and output window will use, if present in UIDefaults, to color themselves in accordance with the UI spec for them on a given look and feel Custom border implementations NetBeans uses for scroll panes to reduce "border-buildup" A custom implementation of ToolbarUI which NetBeans uses for its toolbars, and a custom UI for toolbar buttons which sizes them correctly (GTK and Aqua only, currently) Insets definition for the editor scrollbar, used to get the height of the upper and lower button of the scrollbar for purposes of the Error Stripe. The appropriate key value is "Nb.Editor.ErrorStripe.ScrollBar.Insets". Compensate for missing elements on some (GTK) look and feels, which standard Swing code expects to be present, i.e. UIManager.getColor ("control"), to enable older code to run unmodified on newer look and feels. Its API consists of a single method, org.netbeans.swing.plaf.Startup.run (Class lookAndFeel, int fontSize, URL themeFile), which should be called early in NetBeans startup sequence by core, to initialize UIDefaults values before any main window GUI is constructed. It provides a minimal SPI in the form of the abstract class LFCustoms, which an alternate look and feel could use to provide lists of keys and values which should be installed into UIDefaults, via the mechanism documented in the documentation for LFCustoms. PlafAPI

Used by NetBeans to customize the UI to conform to UI design specifications; can be used by third parties who are employing parts of the NetBeans platform in their applications, such as the windowing system.

How to use Tab Control?

The tab control is a swing control used by NetBeans window system, similar in function to a JTabbedPane, which allows the user to see and select tabs that contain different components. It defines two GUI components: TabbedContainer (similar to JTabbedPane) and TabDisplayer, a generic component for displaying tabs which is not associated with any particular container. Several different types of UIs (view, editor, sliding) are provided, each of which is handled by a different UI delegate class; UI delegate subclasses designed to fit with Windows, Metal, Aqua and GTK look and feels are provided. TabbedContainerAPI PopupSwitcherAPI

Primary use cases are in the NetBeans window system, as top level containers in the main window; future use cases include providing a consistent UI for tabs in the property sheet, the component inspector and the output window, but this probably will not happen for 4.0.

How to use Actions APIs?

Actions provides system of support and utility classes for 'actions' usage in NetBeans.

First see the API description. Here is just a list of frequently asked or interesting questions slowly expanding as people ask them:

Actions faq:

How to define configurable Shortcut for Component based shortcut?

Q: The usual Swing way of defining Actions for your component is to create an Action instance and put it into the Input and Action maps of your component. However how to make this Action's shortcut configurable from the Tools/Keyboard Shortcuts dialog?

In order for the action to show up in Keyboards Shortcut dialog you need the action defined in the layer file under "Actions" folder and have the shortcut defined there under "Keymaps/<Profile Name>" linking to your action.

    <folder name="Actions" >
        <folder name="Window">
            <file name="org-netbeans-core-actions-PreviousViewCallbackAction.instance"/>
        </folder>
    </folder>

    <folder name="Keymaps">
        <folder name="NetBeans">
            <file name="S-A-Left.shadow">
                <attr name="originalFile" stringvalue="Actions/Window/org-netbeans-core-actions-PreviousViewCallbackAction.instance"/>
            </file>
        </folder>
    </folder>

The mentioned Action has to be a subclass of org.openide.util.actions.CallbackSystemAction. It does not necessarily has to perform the action, it's just a placeholder for linking the shortcut. You might want to override it's getActionMapKey() and give it a reasonable key.

The actual action that does the work in your component (preferably a simple Swing javax.swing.Action) is to be put into your TopComponent's ActionMap. The key for the ActionMap has to match the key defined in the global action's getActionMapKey() method.

        getActionMap().put("PreviousViewAction", new MyPreviousTabAction());

This way even actions from multiple TopComponents with the same gesture (eg. "switch to next tab") can share the same configurable shortcut.

Note: Don't define your action's shortcut and don't put it into any of the TopComponent's javax.swing.InputMap. Otherwise the component would not pick up the changed shortcut from the global context.


How to use UI Utilities API?

The org.openide.awt provides API/SPI for UI related aspects of application.

XXX no answer for arch-usecases


How to use Compatibility APIs?

XXX no answer for arch-what

XXX no answer for arch-usecases


How to use Dialogs API?

The DialogsAPI allows creating a user notification, a dialog's description and also permits it to be displayed. The wizard framework allows create a sequence of panels which leads a user through the steps to complete any task. This API is part of package org.openide.

There is a Wizard Guide Book providing the introductionary information, moreover here is a list of frequently asked questions and their answers:

How to change the title of a wizard?

Q: Although none of my panels have names set (using setName() method) and the method name() in the WizardDescriptor.Iterator returns an empty string, I'm getting "wizard ( )" as the title of each panel in my wizard. When I set the name of the panel and return a string from the method name() I get: "panelName wizard (myName)". The wizard steps are labeled correctly, it just the panel title/name that looks like it adds "wizard ()" to any of my panels. I don't mind the "( )", but I would like to rid of the word "wizard".

A: You can change the format of your wizard's title by WizardDescriptor.setTitleFormat(MessageFormat format) and rid of 'wizard' word in the default wizard's title.


How to use File System API?

The Filesystems API provides a common API to access files in a uniform manner. It is available as standalone library and also is bundled together with other parts of the openide. Specification

Many of the usecases are described at the overall documentation, in a way how to register a mime type. Some of the additional usecases are covered here.

How to change menus, etc. after login?

Since version 7.1 there is a way to change the content of system file system in a dynamic way. As system file systems contains various definitions (in NetBeans Platform menus, toolbars, layout of windows, etc.) it de-facto allows global change to these settings for example when user logs into some system.

First thing to do is to create an implementation of filesystem. It can be created either from scratch, or by subclassing AbstractFileSystem, or MultiFileSystem. In this example we will subclass the MultiFileSystem:

public class LoginFileSystem extends MultiFileSystem {
    private static LoginFileSystem INSTANCE;
    public LoginFileSystem() {
        // let's create the filesystem empty, because the user
        // is not yet logged in
        INSTANCE = this;
    }
    public static void assignURL(URL u) throws SAXException {
        INSTANCE.setDelegates(new XMLFileSystem(u));
    }
}
      

It is necessary to register this instance in lookup by creating the file:

with a single line containing the full name of your filesystem - e.g. your.module.LoginFileSystem. When done, the system will find out your registration of the filesystem on startup and will merge the content of the filesystem into the default system file system. You can show a dialog letting the user to log in to some system anytime later, and when the user is successfully in, just call LoginFileSystem.assignURL(url) where the URL is an XML file in the same format as used for regular layer files inside of many NetBeans modules. The system will notice the change in the content and notify all the config file listeners accordingly.

Of course, instead of XMLFileSystem you can use for example memory file system, or any other you write yourself.


How to use I/O APIs?

The Input/Output API is a small API module which contains InputOutput and related interfaces used in driving the Output Window. The normal implementation is org.netbeans.core.output2.

There is an SPI but additional implementations are not expected. The API is most important.

Simple usage example:


InputOutput io = IOProvider.getDefault().getIO("My Window", true);
io.select();
OutputWriter w = io.getOut();
w.println("Line of plain text.");
OutputListener listener = new OutputListener() {
    public void outputLineAction(OutputEvent ev) {
        StatusDisplayer.getDefault().setStatusText("Hyperlink clicked!");
    }
    public void outputLineSelected(OutputEvent ev) {
        // Let's not do anything special.
    }
    public void outputLineCleared(OutputEvent ev) {
        // Leave it blank, no state to remove.
    }
};
w.println("Line of hyperlinked text.", listener, true);

How to use Datasystems API?

In summary, the LoadersAPI is responsible for scanning files in a directory on disk, weeding out irrelevant files of no interest to the IDE, and grouping the rest into logical chunks, or just determining what type of data each represents. It does this scanning by asking each registered data loader whether or not the given file(s) should be handled. The first loader to recognize a file takes ownership of it, and creates a matching data object to represent it to the rest of the IDE.

A lot of usecases is described in the javadoc. Here is the list of some faqs:

Using Scripting and Templating Languages

Often many people require ability to create a "clever" template - e.g. write piece of simple text and at the time of its processing do some advanced changes to it using either scripting or templating languages.

This traditionally used to be a bit complicated task, however since version 6.1 there are new interfaces can be registered as a services in a lookup and it is reponsible for handling the whole copy of the template file(s) to the destination folder. and can be registered as a services in a lookup and it is reponsible for providing "hints" - e.g. map mapping strings to various objects. and these interfaces allow anyone to extend the behaviour during creation of new files without writing new DataLoader and co.

Smart Templating Quick How-To
First of all create a file in your module layer located somewhere under the Templates/ folder. Make it a template by adding <attr name="template" boolvalue="true"/>. Associate this template with a scripting language, for example by <attr name="javax.script.ScriptEngine" stringvalue="freemarker"/>. Now make sure that the scripting language integration is also available by requesting a token in standard format, for freemarker just put OpenIDE-Module-Needs: javax.script.ScriptEngine.freemarker in your manifest. Also create a runtime dependency on org.netbeans.modules.templates - the module providing the templates/scripting languages integration. This tells the NetBeans module system that a module providing integration with such scripting engine has to be enabled. Now you can use regular script language tags inside of your template file. When you write your instantiate method in your wizard, you can create a Map<String,Object> and fill it with parameters collected from your wizard and then pass it to CreateFromTemplate(targetFolder, targetName, mapWithParameters) . This will invoke the scripting language and make the mapWithParameters values available to it. Beyond this there is few standard parameters predefined including name, user, date and time and also additional parameters are collected from all registered CreateFromTemplateAttributesProviders.

Moreover there is a built in support for scripting languages in the standard NetBeans IDE. If a template is annotated with a property that can be associated to templates that either should return real instance of ScriptEngine interface or a String name of the engine that is then used to search for it in the javax.script.ScriptEngineManager. Usually the freemarker engine is the one that is supported by the NetBeans IDE - if your module wants to use it then include a token dependency OpenIDE-Module-Needs: javax.script.ScriptEngine.freemarker in your manifest file (also accessible through project customizer GUI) to indicate to the system that you need it. then the scripting engine is then used to process the template and generate the output file. While running the engine one can rely on few predefined properties:

Other properties can indeed be provided by CreateFromTemplateAttributesProviders. After processing, the output is also sent to appropriate org.openide.text.IndentEngine associated with the mime type of the template, for formating.

How to add action to folder's popup menu?

The actions that the default folder loader shows in its popup menu are read from a layer folder Loaders/folder/any/Actions so if any module wishes to extend, hide or reorder some of them it can just register its actions there. As code like this does:
    <folder name="Loaders" >
        <folder name="folder" >
            <folder name="any" >
                <folder name="Actions" >
                    <file name="org-mymodule-MyAction.instance" >
                        <attr name="instanceCreate" stringvalue="org.mymodule.MyAction" />
                    </file>
                </folder>
            </folder>
        </folder>
    </folder>
    
As described in general actions registration tutorial.

This functionality is available since version 5.0 of the loaders module. Please use OpenIDE-Module-Module-Dependencies: org.openide.loaders > 5.0 in your module dependencies.

In version 5.8 all the standard loaders were changed to read actions from layer:

How to allow others to enhance actions of your loader?

If you want other modules to enhance or modify actions that are visible on DataObjects produced by your DataLoader and you are either using DataNode or its subclass, you can just override protected String actionsContext() method to return non-null location of context in layers from where to read the actions.

The usual value should match Loaders/mime/type/Actions scheme, for example java is using Loaders/text/x-java/Actions, but the name can be arbitrary.

This functionality is available since version 5.0 of the loaders module. Please use OpenIDE-Module-Module-Dependencies: org.openide.loaders > 5.0 in your module dependencies.

How to use Module System API?

The Modules API lies at the core of NetBeans and describes how plug-in modules are added and managed. ModulesAPI

How a classpath of my module is constructed?

The NetBeans is defacto a container that manages individual module's lifecycle and other runtime aspects. One of the important things is that it creates a runtime classpath for provided modules based on dependencies they specify in their manifests. The overview of the runtime infrastructure is a good starting place for everyone who wishes to learn more about the NetBeans runtime container behaviour.

How to use Settings Options API?

org.openide.options

N/A


How to use Utilities API?

Described in the overall answer.

There is a great introduction to Lookup and its usage in its javadoc. Here is just a list of frequently asked or interesting questions slowly expanding as people ask them:

Lookup faq:

How to specify that a service in Lookup should be available only on Windows?

Q: Most of the time I specify interfaces that I want to add to the Lookup class in the layer.xml file. But, let's say I have a platform-specific interface (something on Windows only, for instance).

How can I specify (in the xml, or programmatically) that this service should only be added to the Lookup if the platform is Windows? >

In general there are three ways to achieve this.

How shall I write an extension point for my module?

Q: I have more modules one of them providing the core functionality and few more that wish to extend it. What is the right way to do it? How does the Netbeans platform declare such extension point?

Start with declaring an extension interface in your core module and put it into the module's public packages. Imagine for example that the core module is in JAR file org-my-netbeans-coremodule.jar and already contains in manifests line like OpenIDE-Module: org.my.netbeans.coremodule/1 and wants to display various tips of the day provided by other modules and thus defines:

 

package org.my.netbeans.coremodule;

public interface TipsOfTheDayProvider {
    public String provideTipOfTheDay ();
}

And in its manifest adds line OpenIDE-Module-Public-Packages: org.my.netbeans.coremodule.* to specify that this package contains exported API and shall be accessible to other modules.

When the core module is about to display the tip of the day it can ask the system for all registered instances of the TipsOfTheDayProvider, randomly select one of them:


import java.util.Collection;
import java.util.Collections;
import org.openide.util.Lookup;

Lookup.Result result = Lookup.getDefault ().lookup (new Lookup.Template (TipsOfTheDayProvider.class));
Collection c = result.allInstances ();
Collections.shuffle (c);
TipsOfTheDayProvider selected = (TipsOfTheDayProvider)c.iterator ().next ();

and then display the tip. Simple, trivial, just by the usage of Lookup interface once creates a registry that other modules can enhance. But such enhancing of course requires work on the other side. Each module that would like to register its TipsOfTheDayProvider needs to depend on the core module - add OpenIDE-Module-Module-Dependencies: org.my.netbeans.coremodule/1 into its manifest and write a class with its own implementation of the provider:


package org.my.netbeans.extramodule;

class ExtraTip implements TipsOfTheDayProvider {
    public String provideTipOfTheDay () {
        return "Do you know that in order to write extension point you should use Lookup?";
    }
}

Then, the only necessary thing is to register such class by using the J2SE standard into plain text file META-INF/services/org.my.netbeans.coremodule.TipsOfTheDayProvider in the module JAR containing just one line:

org.my.netbeans.extramodule.ExtraTip

and your modules are now ready to communicate using your own extension point.

How shall I do or influence logging in NetBeans?

If you are interested in logging from inside your module, or in writing your own log handler or in configuring the whole system, then best place to start is the NetBeans logging guide.


How to use Old Enumeration API?

OldEnumerationsAPI

Most of the functionality is deprecated, so it is better to go and use the replacement API in org-openide-util.jar.


How to use Window System API?

Window System API is used to display and control application GUI: Main window, frames, components.

General Use cases can be read on the external page. Here is a small howto for simple things that may be found useful:

How to create a '.settings' file for a TopComponent?

Either write it by hand (not that hard if you copy other file and tweak it to match your TC), or start the IDE, instantiate the TC somehow (You have a "Window->Show My TC", right? ), copy the file that gets created in $userdir/config/Windows2Local/Component and cleanup the serialdata section - replace it with proper "<instance class='..." /> tag.

How to make a TopComponentGroup?

Q: I'm trying to make a TopComponentGroup. I've just read http://ui.netbeans.org/docs/ui/ws/ws_spec.html#3.9 I want to make a group that uses the first invocation strategy. That is, I want the group to open/close when I activate a certain subclass of TopComponent. Say, for example, I have a FooTopComponent, and when it's active, I want to open a FooPropertySheetComponent, docked in a mode on the right-hand side. I know I have to:
  1. declare the group in the layer file (Windows2/Groups)
  2. have code for opening the group
  3. have code for closing the group
I think I do #2 in FooTopComponent.componentActivated() and #3 in FooTopComponent.componentDeactivated(). Is that right?

A:Yes it is correct way. You can check simple test module. First you must get TopComponentGroup instance using find method then call TopComponentGroup.open()/close(). Here is the code in your componentDeactivated method:
   protected void componentDeactivated ()
   {
       // close window group containing propsheet, but only if we're
       // selecting a different kind of TC in the same mode
       boolean closeGroup = true;
       Mode curMode = WindowManager.getDefault().findMode(this);
       TopComponent selected = curMode.getSelectedTopComponent();
       if (selected != null && selected instanceof FooTopComponent)
           closeGroup = false;
             if (closeGroup)
       {
           TopComponentGroup group = WindowManager.getDefault().findTopComponentGroup(TC_GROUP);
           if (group != null)
           {
               group.close();
           }
       }
   }     
    

How to use Search API?

It allows other modules to define how the nodes they define should be searched, without depending on any concrete module containing the search feature.

The SearchInfo API+SPI allows other modules to specify whether and how should nodes they define be searched.

The definition is represented by objects implementing interface SearchInfo. To enable searching on a custom node, a SearchInfo object must be added to the node's lookup. In most cases, there is no need to define own class implementing the interface - one can use factory methods of class SearchInfoFactory.

Example:

import org.openide.util.lookup.Lookups;
  
public class MyNode extends AbstractNode {

    public MyNode(FileObject folder) {
        super( new MyNodeChildren(folder),
               Lookups.singleton(SearchInfoFactory.createSearchInfo(
                     folder,
                     true,
                     new FileObjectFilter[] {
                             SearchInfoFactory.VISIBILITY_FILTER
                     }) );
    }

    ...

}

One of the factory methods - createSearchInfoBySubnodes(...) - requires that a reference to the node itself. In this case, it is not possible to fully define the lookup in the super(...) statement of the constructor because a reference to the node is not available until the call of super(...) returns. In this case, a special technique must be used:

import org.openide.util.lookup.AbstractLookup;
import org.openide.util.lookup.InstanceContent;
  
public class MyNode extends AbstractNode {

    public MyNode() {
        this(new InstanceContent());
    }

    public MyNode(InstanceContent ic) {
        super(new AbstractLookup(ic));
        ic.add(SearchInfoFactory.createSearchInfoBySubnodes(this));
    }

    ...

}
defines interfaces SearchInfo, FileObjectFilter and a factory class SearchInfoFactory