站内搜索: 请输入搜索关键词
当前页面: 在线文档首页 > Java Tutorial 5.0 英文版

API Design - Java Tutorial 5.0 英文版

The JavaTM Tutorial
Previous Page Lesson Contents Next Page Start of Tutorial > Start of Trail > Start of Lesson Search
Feedback Form

Trail: Collections
Lesson: Interoperability

API Design

In this short but important section, you'll learn a few simple guidelines that will allow your API to interoperate seamlessly with all other APIs that follow these guidelines. In essence, these rules define what it takes to be a good "citizen" in the world of collections.

Parameters

If your API contains a method that requires a collection on input, it is of paramount importance that you declare the relevant parameter type to be one of the collection interface (in the Collections trail) types. Never use an implementation (in the Collections trail) type because this defeats the purpose of an interface-based Collections Framework, which is to allow collections to be manipulated without regard to implementation details.

Further, you should always use the least-specific type that makes sense. For example, don't require a List (in the Collections trail) or a Set (in the Collections trail) if a Collection (in the Collections trail) would do. It's not that you should never require a List or a Set on input; it is correct to do so if a method depends on a property of one of these interfaces. For example, many of the algorithms provided by the Java platform require a List on input because they depend on the fact that lists are ordered. As a general rule, however, the best types to use on input are the most general: Collection and Map.


Caution: Never define your own ad hoc collection class and require objects of this class on input. By doing this, you'd lose all the benefits provided by the Java Collections Framework (in the Collections trail).

Return Values

You can afford to be much more flexible with return values than with input parameters. It's fine to return an object of any type that implements or extends one of the collection interfaces. This can be one of the interfaces or a special-purpose type that extends or implements one of these interfaces.

For example, one could imagine an image-processing package, called ImageList, that returned objects of a new class that implements List. In addition to the List operations, ImageList could support any application-specific operations that seemed desirable. For example, it might provide an indexImage operation that returned an image containing thumbnail images of each graphic in the ImageList. It's critical to note that even if the API furnishes ImageList instances on output, it should accept arbitrary Collection (or perhaps List) instances on input.

In one sense, return values should have the opposite behavior of input parameters: It's best to return the most specific applicable collection interface rather than the most general. For example, if you're sure that you'll always return a SortedMap, you should give the relevant method the return type of SortedMap rather than Map. SortedMap instances are more time-consuming to build than ordinary Map instances and are also more powerful. Given that your module has already invested the time to build a SortedMap, it makes good sense to give the user access to its increased power. Furthermore, the user will be able to pass the returned object to methods that demand a SortedMap, as well as those that accept any Map.

Legacy APIs

There are currently plenty of APIs out there that define their own ad hoc collection types. While this is unfortunate, it's a fact of life, given that there was no Collections Framework in the first two major releases of the Java platform. Suppose you own one of these APIs; here's what you can do about it.

If possible, retrofit your legacy collection type to implement one of the standard collection interfaces. Then all the collections you return will interoperate smoothly with other collection-based APIs. If this is impossible (for example, because one or more of the preexisting type signatures conflict with the standard collection interfaces), define an adapter class that wraps one of your legacy collections objects, allowing it to function as a standard collection. (The Adapter class is an example of a custom implementation (in the Collections trail).)

Retrofit your API with new calls that follow the input guidelines to accept objects of a standard collection interface, if possible. Such calls can coexist with the calls that take the legacy collection type. If this is impossible, provide a constructor or static factory for your legacy type that takes an object of one of the standard interfaces and returns a legacy collection containing the same elements (or mappings). Either of these approaches will allow users to pass arbitrary collections into your API.


Previous Page Lesson Contents Next Page Start of Tutorial > Start of Trail > Start of Lesson Search
Feedback Form

Copyright 1995-2005 Sun Microsystems, Inc. All rights reserved.